—

DREDGING RESEARCH PROGRAM
’ TECHNICAL REPORT DRP-9671
US Army Corps

of Engineers SILENT INSPECTOR SYSTEM
TECHNICAL MANUAL

by
Jeffrey M. Cox

Evans-Hamilton, Inc.
731 Northlake Way, Suite 201
Seattle, Washington 98103

Paul Maresca

AdaSoft, Inc.
8750-9 Cherry Lane, Laurel, Maryland 20707

James Rosati |l

DEPARTMENT OF THE ARMY
Waterways Experiment.Station, Corps of Engineers
3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199

February 1996
Final Report

Approved For Public Release; Distribution Is Unlimited

19960307 024

Prepared for DEPARTMENT OF THE ARMY
U.S. Army Corps of Engineers
Washington, DC 20314-1000

Under Work Unit 32482

DTIC QUALITY INSPECTED 1

 DISCLAIVER NOTICE

THIS DOCUMENT IS BEST
'QUALITY AVAILABLE. THE
COPY FURNISHED TO DTIC
" CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.

The Dredging Research Program (DRP) is a seven-year program of the U.S. Army Corps of Engineers.
DRP research is managed in these five technical areas:

Area 1 - Analysis of Dredged Material Placed in Open Water

Area 2 - Material Prbpenies Related to Navigation and Dredging

Area 3 - Dredged Plant Equipment and Systems Processes

Area 4 - Vessel Positioning, Survey Controls, and Dredge Monitoring Systems
Area 5 - Management of Dredging Projects

The contents of this report are not to be used for advertising,
publication, or promotional purposes. Citation of trade names
does not constitute an official endorsement or approval of the use
of such commercial products.

”n
% PRINTED ON RECYCLED PAPER

US Army Corps

of Engineers
Waterways Experiment
Station

Dredging Research Program
Report Summary

Silent Inspector System Technical Manual (TR DRP-96-1)

ISSUE: Inspection of dredging operations can
be greatly assisted by automatic logging of
dredging activities and creation of dredging
reports. Development of a system to assist
inspectors in this capacity was the goal of this
project.

RESEARCH: A Dredge Operations Silent
Inspector System (DOSIS), developed to auto-
matically log data from instruments generally
maintained aboard hopper dredges, compute
the dredging activities occurring and the quan-
tity of material retained, and provide summa-
ries of this information in both reports and
graphical displays, has been developed and is
undergoing testing and improvements. While
the system was designed for use aboard hop-
per dredges, its basic concept will be applied
to other dredge types in the future.

SUMMARY: This report describes how the
Silent Inspector system for hopper dredges oper-
ates internally assuming the system has already

been installed by a systems engineer. This
report is intended to be used by systems engi-
neers. A companion Silent Inspector User’s
Manual' describes how to operate the installed
system.

AVAILABILITY OF REPORT: The report is
available through the Interlibrary Loan Service
from the U.S. Army Engineer Waterways
Experiment Station (WES) Library, telephone
number (601) 634-2355. National Technical
Information Service (NTIS) report numbers may
be requested from the WES library.

To purchase a copy of the report, call NTIS
at (703) 487-4780.

1 J.M. Cox, P. Maresca, and A. Jarvela. (1995). “Silent
Inspector User'sManual,” Instruction Report DRP-95-2,
U.S. ArmyEngineer Waterways Experiment Station,
Vicksburg, MS.

February 1996

Please reproduce this page locally, as needed.

Dredging Research Program

Silent Inspector System
Technical Manual

by Jeffrey M. Cox

Evans-Hamilton, Inc.
731 Northlake Way, Suite 201
Seattle, WA 98103

Paul Maresca

AdaSoft, Inc.
8750-9 Cherry Lane
Laurel, MD 20707

James Rosati lll

U.S. Army Corps of Engineers
Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Final report

Approved for public release; distribution is unlimited

Prepared for U.S. Army Corps of Engineers
Washington, DC 20314-1000

Under Work Unit 32482

Technical Report DRP-96-1
February 1996

@

US Armmy Corps
of Engineers P
Waterways Experiment = o= N N
Station et l
HFORMATION
LABORATORY

) FOR INFORMATION CONTACT :
ENVIRONNENTAL 4 ! ‘6’ PUBLIC AFFAIRS OFFICE
P ' U.S. ARMY ENGINEER
N WATERWAYS EXPERIMENT STATION
3000 HALLS FERRY ROAD
VICKSBURG, MISSISSIPP! 30180-6199
= PHONE : (501)634-2502

STRUCTURES
a LABORATORY

SCALE
[°
| — s 1
AREA OF RESEAVATION = 2.7 sien

Waterways Experiment Station Cataloging-in-Publication Data

Cox, Jeffrey M.

Silent Inspector System technical manual / by Jeffrey M. Cox, Paul
Maresca, James Rosati lIl ; prepared for U.S. Army Corps of Engineers.

126 p. : ill. ; 28 cm. — (Technical report ; DRP-96-1)

1. Dredging — Handbooks, manuals, etc. 2. Dredges — Computer
programs —Handbooks, manuals, etc. 3. Silent Inspector System (Com-
puter program) — Handbooks, manuals, etc. 1. Maresca, Paul. II.
Rosati, James. Ill. United States. Army. Corps of Engineers. V. U.S.
Army Engineer Waterways Experiment Station. V. Dredging Research
Program (U.S.) VL. Title. VII. Series: Technical report (U.S. Army Engi-
neer Waterways Experiment Station) ; DRP-96-1.

TA7 W34 no.DRP-96-1

Contents

Preface i e e e vii
R 1) 1 1F: Vo viii
I—Introduction ittt e 1
Concept of the Silent Inspector System 1
About This Manual0t ittt 2
2—System OVEIVIEWot it i 4
System Operational Componentsc.co0viennnn.... 4
Hardware and Software Requirements 7
System Development Standards 8
3—Dredge-Specific System i 10
Operator INputsttt e e e 11
Reading SensorDatac0itiniiininnnnnn.. 12
Computation of Additional Data Values 13
Assigning Status Valuesc0 ittt 14
Data Display . . .o v i e e e e 15
Data Manipulation for System Testing 15
Inserting Data into the SHIP Database 16
4—System Database 18
Database Engine i, 18
Database StruCtureot ottt e e 18
Data FIow OVerviewottt it s it e e et e e e e e 19
UserTablesc ittt e e e, 19
System Tables i e e 35
Stored Proceduresci it e e 35
RT Kemel e 37
5—System Computationsttt 39
DSS Component Calculationsc.c0iiiiinn... 39
SHIP Component CalculationS it 43
6—System Interfaces 54
Sensors-to-DSS Interfacec i 54

DSS-to-SHIP Interfaceo ittt et e e e ee 56

vi

SHIP-to-SHORE Interfacet inenneennnn 60
Outside Access Interface R TII 60
7—SHIP Software Modules i 61
Setupt e e e e et e e 61
1 (07 1117 1 17 63
DOWNEINEttt ie e ite e ettt ittt tnne e eannnnn 63
L2 070) (1 64
Plottingc0iiiiiiiiiiiinnnn.. e 64
Backupand Archive i 65
Appendix A: Stored Procedures i Al
Appendix B: Backup and Archive Script B1
Appendix C: Configuration Management Library Structure C1
SF 298

List of Figures

Figure 1. Overview of data flow within DOSIS 20

List of Tables

Table 1. Contents of SHIP Database User Tables 22
Table 2. Dredge Status Computation Logic Table 50

Preface

This technical manual was prepared for the U.S. Army Engineer Waterways
Experiment Station (WES) under Dredging Research Program (DRP) Technical
Area 4, Work Unit No. 32482, “Silent Inspector.” The DRP is sponsored by
Headquarters, U.S. Ammy Corps of Engineers (HQUSACE). HQUSACE Tech-
nical Monitor for Technical Area 4 was Mr. M. K. Miles.

This technical manual was written by Mr. Jeffrey Cox, Evans-Hamilton,
Inc., Seattle, WA; Mr. Paul Maresca, AdaSoft, Inc., Laurel, MD; and
Mr. James Rosati III, WES. Technical oversight was provided by Mr. James
Rosati, Principal Investigator, Prototype Measurements and Analysis Branch,
Coastal Engineering Research Center (CERC), WES. Mr. E. Clark McNair,
Jr., and Dr. Lyndell Z. Hales were Manager and Assistant Manager, respec-
tively, of the DRP. Dr. James R. Houston and Mr. Charles C. Calhoun, Jr.,
were Director and Assistant Director, respectively, of CERC, which conducted
the DRP.

At the time of publication of this report, Dr. Robert W. Whalin was Direc-

tor of WES. COL Bruce K. Howard, EN, was Commander.

For further information conceming this report, contact Mr. James Rosati,
(601) 634-2022, or Mr. E. Clark McNair, Jr., (601) 634-2070.

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.

viii

Summary

This report describes the Silent Inspector system developed for monitoring
hopper dredge operations. The system collects and records measurements from
shipboard sensors, calculates the dredging activities being performed and the
weight of the material recovered, and displays this information through stan-
dard reports and graphical data displays. Recorded data are also automatically
backed up and later archived to allow transfer of the data to other locations.
The Silent Inspector data can provide a permanent record of the dredging
activity.

The system operates on personal computers using the Unix operating sys-
tem to allow multitasking operations, and consists of three primary com-
ponents: a dredge-specific software (SDD) component, a ship-based
component (SHIP), and a shore-based component (SHORE). The DSS collects
sensor data, checks these data against acceptable ranges, computes the status of
the dredging pumps (on/off) and other equipment, attaches the name of the
project, dredge, and contract number to the sensor data, and inserts these
incoming data into the system’s central database. SHIP maintains the system’s
central database, accepting data in real time from a DSS. SHIP then reviews
those data, computes the present dredging activity being performed and the
amount of material recovered, and produces reports (trip, daily, job) and graph-
ical displays of the data. Additional information concerning the dredging
project, the dredges used, and location of the dredging and disposal areas can
also be inserted into the system database via the SHIP component. SHORE
differs from the SHIP component in that it does not receive data in real time
from a DSS unit. Its purpose is to provide in-office data review, display, and
post-field processing.

The system is built upon the Sybase relational database and utilizes client-
server architecture to interface with programs and computers accessing the
database. Once tumned on, the system operates nearly autonomously in its
collection, processing, reporting, and archiving of data. Many additional oper-
ations, such as specific data displays, are user initiated and controlled. Nearly
all user controlled activities are operated using graphical screens for ease of
use and minimal training time. System security is maintained through user
ID’s and password protection.

Described herein are the system’s database structure, data computations,
data flow, system architecture and interfaces, and software structure. This
manual is designed to assist system engineers in the upkeep and modification
of the system and its components.

1 Introduction

Concept of the Silent Inspector System

The Dredging Operations Silent Inspector System (DOSIS), referred to as
the Silent Inspector, was created to be a tool to assist Corps dredging inspec-
tors in monitoring the performance of contracted hopper dredging operations
on a 24-hr basis. The Silent Inspector provides automated collection, analy-
sis, display, and reporting of information about a dredge’s activities which
allow inspectors and contract administrators to better assess contractor perfor-
mance and adherence to contract terms, both when dredge inspectors are
aboard the dredge and especially when they are not aboard. The present sys-
tem, described in this manual, is designed for hopper dredges only.

The system uses state-of-the-art computer hardware and software to simulta-
neously measure several parameters of the dredge’s activities, calculate addi-
tional information, such as the activity the dredge is performing and the
quantity of material it has retained, display this information, automatically pro-
duce Corps dredging reports, and provide a permanent and transferable copy of
this information. The system strives to produce a factual record of the
dredge’s activities that is sufficient for dredging inspectors to accurately assess
contract performance.

In particular, the overall functions the system is designed to perform are:
a. Record data on several aspects of dredging operations.

b. Properly label the data with the project name, contract ID, dredge
name, trip (load) number, and dredging and disposal locations.

c. Compute the type of dredging activity occurring aboard the dredge at
any time and the amount of material recovered in terms of tons dry
measure (TDM).

d. Automatically provide summaries of trip (load), daily, and job-to-date
dredging activities on a basis similar to reports in use today.

e. Graphically display recorded data.

Chapter 1 Introduction

f. Automatically back up recorded data daily and weekly.

g. Archive the data for transfer to other Silent Inspector systems and for
permanent record keeping.

While the direct purpose of the system is to allow inspectors and contract
administrators to assess contract performance, use of the Silent Inspector sys-
tem provides the following additional benefits to the Corps of Engineers:

a. Measurés, records, and reports dredging information in a standardized
format for similar types of dredges to allow the data to be transferred
easily between all Corps of Engineers Districts and offices.

b. Provides a means to electronically archive the data collected and trans-
fer it to users working on other hardware and software mediums.

c. Provides a graphical display of collected data by time or location.

d. Provides a Corps-generated independent database of dredging activities
for use in settling claims brought by contractors against the Corps.

e. Provides flexibility and extendibility to meet changing system require-
ments, and to meet each District’s unique system requirements.

f. Allows Corps users to add individual features without destroying the
integrity or operation of the basic system.

g. Provides the Corps a more accurate assessment of dredging activities,
downtime, and production rates for more accurate estimating of future
project costs and budgets.

The system has been designed to be easy to use via graphical user screens,
is highly automated so that it functions reliably, and noncorruptible, so that
access to the system is limited to approved users, and the recorded data cannot
be altered or manipulated.

About This Manual

To assist in the development of the Silent Inspector system operating
requirements and standards, a training and reference version of the system was
developed. This system is a specific implementation of the Silent Inspector
concept. This manual provides technical information on how the training and
reference Silent Inspector system for hopper dredges is constructed and func-
tions. This manual is specifically targeted to system support personnel and
system engineers and programmers. This manual does not describe how to

Chapter 1 Introduction

operate the system; for that information, the reader is referred to the Silent
Inspector User’s Manual !

This manual is organized into the following chapters:

a.

System Overview: Chapter 2 discusses the system’s overall capabilities,
its major components, its software modules and functions, and the
software standards to which it adheres.

Dredge-Specific System: Chapter 3 describes the function and actions
of the dredge-specific software (DSS) component of the system, which
gathers sensor measurements and inputs these data into the system
database.

System Database: Chapter 4 describes the system’s central database
structure, tables, data flow, and controlling programs.

System Computations: Chapter 5 lists the computations and provides
the equations for all calculations of new information which occur
within the system.

System Interfaces: Chapter 6 describes the interface requirements and
formats used by, and required for interaction with, the system.

SHIP Software Modules: Chapter 7 describes how various software
modules controlled by the user function, once initiated.

Stored Procedures: Appendix A is a listing of the stored procedures
used with the Silent Inspector software.

Backup and Archive Script: Appendix B is a listing of the backup and
archive script for the Silent Inspector software.

Configuration Management Library Structure: Appendix C is a listing
of the configuration management library structure for the Silent Inspec-
tor software.

1 Cox, J. M., Maresca, P., and Jarvela, A. (1995). “Silent Inspector User’s Manual,” Instruc-
tion Report DRP-95-2, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Chapter 1 Introduction

2 System Overview

This chapter provides an overview of how the hopper dredge Silent Inspec-
tor system is structured, how data move through the system, where data are
stored, and the functions of the various software modules.

System Operational Components

The Training and Reference Silent Inspector system is composed of three
operational units, called components. These components are named:

a. Dredge-specific software component (DSS).
b. Ship component (SHIP).
¢. Shore component (SHORE).

The central database and primary data processing actions are contained
within the SHIP component. This component receives data in real time from
the DSS component, uses those data to compute the dredge’s current activity
(dredge state) and other information, and packages those data into standard
reports and displays. The DSS component accesses sensor data on dredges,
checks that the data are within an acceptable range, and repackages the data
for insertion into the SHIP database. The SHORE component accepts data
which have been acquired and processed by a SHIP database, and allows users
to review and display previously recorded data, and regenerate dredging
reports over user-specified time periods. A more detailed overview of each
component is provided below.

Dredge-specific software (DSS) component

The Silent Inspector system’s central database for receiving and storing
real-time data aboard a dredge resides within the SHIP component. This data-
base is designed to accept specific types of data about hopper dredge opera-
tions. In addition, the SHIP component is designed to be identical in all Silent
Inspector hopper dredge systems, so that the system is consistent between all

Chapter 2 System Overview

dredges. As each hopper dredge contains a different suite of measurement
sensors, sensor locations, calibrations, data formats, and types of data available,
these unique packages of sensor data must be converted into a standard pack-
age of data, called data records, and sent to the SHIP component in identical
‘format and fashion. This is the role of the DSS component. The specific
functions of the DSS are to:

a. Acquire dredge sensor measurement data every 10 sec.
b. Determine if the sensor data are within acceptable ranges.
¢. Compute additional information needed by the SHIP database.

d. Repackage measured and computed data into a standard format (data
record).

e. Attach the contract ID, project name, and dredge name provided by the
user to the data record.

/. Insert the data into the SHIP database.

While the output of each DSS is identical, the inputs to a DSS will vary
from dredge to dredge; therefore, no two DSS units are expected to operate
internally in exactly the same way. This manual describes the standard por-
tions of the DSS component, such as the DSS-to-SHIP interface, as well as the
unique portions of the training and reference DSS, which was created to inter-
act with the Corps of Engineers dredge Essayons for purposes of system devel-
opment and testing.

SHIP component

The SHIP component is the heart of the Silent Inspector system. Like the
DSS, it resides onboard the dredge; however, all SHIP components are identi-
cal. Required measured data are received from the DSS and are inserted into
the system’s central database. The SHIP system then also performs the
following: :

a. Displays the incoming data in real time.

b. Automatically computes and records the current dredging operation,
called the dredge state, as well as the amount of material retained

(TDM).

¢. Automatically creates standard trip and daily reports based on the
recorded data, and creates job-to-date reports when initiated by the user.

d. Graphically displays any measurement data contained within the data-
base that are requested by the user.

Chapter 2 System Overview

e. Automatically backs up and archives data.

f Pemmits the user to input information concerning the dredging project,
dredge, its crew, dredging and disposal areas, and local marine
landmarks.

The above capabilities are either initiated or controlled by several software
modules. These modules generally allow the user to input specific information
into the database, display or review data within the database, or control the
automatic operation of the database. The primary software modules contained
within the SHIP component, and their functions, are:

Software Modules Purpose/Function

RT Kernel Computes dredge state, TDM, computes and prints stan-
dard reports, controls flow of data through database

Setup User entry of project and dredge information

Monitoring Displays incoming data from DSS

Standard Reports Calculates and produces trip and daily reports

Downtime Display of downtime events, and user input of downtime

cause and comments

Plotting Graphical display of recorded data over time period selected
by user
Backup Automated daily and weekly backup of recorded data, and

user initiated restoration of database using backup files

Archive Automated archiving of recorded data, and user initiated
transfer of archived files

SHORE component

When data, which are recorded on a dredge by the SHIP component, are to
be analyzed at a location other than on the dredge, the data are transferred to a
SHORE component. The SHORE component may reside at any location, such
as the Corps of Engineers District offices. Data analysis may include more
detailed review of the data, and inter-comparison of data obtained from mul-
tiple SHIP units.

The SHORE component functions quite similar to SHIP, with the following
exceptions:

« It operates on shore-based computers.
» It does not collect data in real time from a DSS component.

« It is able to input and review data sets from multiple dredging projects.

Chapter 2 System Overview

Software modules present within the SHIP component (listed above) but not
present or active within the SHORE component are:

Software Modules Purpose/Function

RT Kernel Computes dredge state, TDM, computes and prints stan-
dard reports, controls flow of data through database

Monitoring Displays incoming data from DSS

Archive User-initiated loading or downloading of archived files

The SHORE user interface screens are identical to the SHIP user interface
screens for those software functions contained in both components. Multiple
SHIP data sets can be input into SHORE. Each remains unique based on the
project name, contract ID, and dredge name assigned to the data.

Hardware and Software Requirements

The Training and Reference Silent Inspector system for hopper dredges
operates on the Unix operating system, and 486 type personal computers
(PC’s). The system software has been designed to require minimal or no user
knowledge of the Unix operating system or commercial software packages
utilized within the system. User interactions with the system are via a graph-
ical user interface that allows easy setup, operation, and data review. Cur-
rently the system utilizes the hardware and software listed below.

System hardware

The Silent Inspector hopper dredge system is designed to be used on PC’s,
because they are commonly used throughout Corps of Engineers Districts.
Communication between components, if the components reside on separate
computers, is via Ethernet when the component computers are cabled directly
together. The following computer hardware is necessary for each component
to ensure proper operation:;

Hardware DSS SHIP SHORE
486 PC with minimum of 33-MHz clock, X X X
VGA graphics, standard monitor,
500-MB hard drive, 32-MB RAM

Ethernet link X X

Postscript laser printer X X
Streaming tape drive and tapes X X
Uninterruptable power supply (UPS) X X

Chapter 2 System Overview

System software

The Silent Inspector system was developed using several commercial soft-
ware packages. These packages provide the graphical user screens and data-
base engine within the system. Consequently, each component of the system
needs to access these commercial packages to operate properly. The software
packages listed below must be purchased and installed on the DSS, SHIP, and
SHORE computers for the system to work.

Software

SCO Unix with open desktop

SL-GMS .
Sybase relational database management system (DBMS) (2-8 users)

System-specific software is used to tie specific user actions on the graphical
user interface screens to system actions and to control the flow of data through
the database and display screens. In the Training and Reference Silent Inspec-
tor system, this system-specific software is written primarily in the ADA soft-
ware language. Some limited commands also are programmed within Unix
script. Database stored procedures utilize Sybase commands and script.

System Development Standards

The following standards were used in the development of the Training and
Reference Silent Inspector System. All implementations of the Silent Inspector
system for hopper dredges should adhere to these standards. Some of these
standards are recognized industry standards, and some were developed as part
of the Silent Inspector development program to ensure common capabilities
between all Silent Inspector systems, regardless of their specific
implementation conditions.

Industry standards

Operating System:
IEEE Posix 1003.1 and FIPS 151-1

Database Management System:
SQL (FIPS 127, ANS X3.135-1986)
ISO-RDA (Remote Database Access)

Graphics Data Interchange:
CGM (FIPS 128)
IGES
PDES (NBSIR 88-3813)
Postscript

Chapter 2 System Overview

Network Services:
OSI GOSIP (ANSI X3T5 and FIPS 146)
NFS (IEEE Posix 1003.8)

User Interface:
X Window System - X11.6 (FIPS 158)
OSF/Motif
Microsoft’s Presentation Manager

Connectivity:
TCP/IP
Ethernet (IEEE 802.3)

Applications Portability Profile:
FIPS 151 (with conformance to extended Posix, SQL, OSI, NFS,
X-Windows, C and other languages)

Program Languages:

C (ANSI X3J11 and X3.159-1989)
FORTRAN (FIPS 069-1 and ANSI X3J3, ANS X3.9-1978)
ADA (FIPS 119, ISO 8652, ANSI MIL 18115A)

PASCAL (FIPS 109, ANSI S319, ISO 7185-1983 Level 1)

Silent Inspector specific standards

Interfaces:
SHIP database input/DSS output

Reports:
Trip
Daily
Job-to-date

Computations:
TDM
Dredge state

The specific requirements of each of the system-specific standards are
described in detail within later chapters in this manual.

Chapter 2 System Overview

10

3 Dredge-Specific System

The dredge-specific system (DSS) component of the Silent Inspector system
is designed to receive a variety of measurements from sensors aboard hopper
dredges, to formulate from these sensor measurements a common (identical)
package of data required by the SHIP component of the system, and to insert
this package of data into the SHIP database at regular (10-sec) intervals. To
perform this function, the DSS computes some data values which are not
directly measured. The DSS also compares each measured or calculated data
value to an, acceptable range for that data value and attaches a data status flag
to the data within the SHIP database.

Because no two hopper dredges are expected to have identical sensor infor-
mation available or to necessarily input the available measurements into the
DSS in identical fashion (RS232, RS422, digitized voltages, etc.), each DSS is
expected to differ in how it handles accepting sensor data, internal data com-
putations, acceptable data ranges, necessary operator inputs, and data display.
All DSS components are expected to be identical in terms of some operator
inputs, data status checking procedures, content and format of the data sent to
the SHIP database, and how it inserts the data into the SHIP database (DSS-to-
SHIP interface).

The specific tasks the DSS performs are listed below:
a. Handling of operator inputs.
b. Reading of required sensor data.

¢. Conversion of the sensor data from its input format to the format
required for insertion into the SHIP database.

d. Computation, based on the sensor data, of additional data required to be
inserted into the SHIP database.

e. Assignment of status values to applicable sensor and computed data
values. '

f. Display of the sensor and computed measurements and status values.

Chapter 3 Dredge-Specific System

into the SHIP database.

How each of these tasks is performed within the training and reference DSS
is described in detail in the following sections.

Operator Inputs

g. Insertion of the sensor and computed data and associated status values
|
|
|

All DSS units require the user to input three pieces of information about a
{ project: the contract ID, project name, and dredge name. Each item may be
up to 32 characters in length. This information is entered on the DSS Entry
’ Panel screen (see User’s Manual, Figure 4.4).1 The contract ID, project
name, and dredge name are inserted into the SHIP database with every sensor
input record to identify the source of the data.

The training and reference DSS also allows the user to select or control two
other items for use in testing the system. These are: (a) the source of
incoming sensor data (either real-time from a dredge, or from a pre-recorded
computer file) and (b) the time associated with the incoming data when they
are sent on to the SHIP database.

To select a data file as the source of incoming data, the user must enter
computer drive, directory, subdirectory, and file name within the data source
box on the DSS Entry Screen. The DSS will then access and read the data
from that file. If no entry is made within the data source box, the DSS
assumes the sensor data are entering the DSS through an RS232 port in
real-time.

If a file is being used as the input source, the sensor data read from the file
are processed and inserted into the database. Each set of sensor data has an
original time tag associated with it. For testing purposes, it is sometimes
useful to set a data rate different from that at which the sensor data were
originally collected. This can be done by the operator by clicking on the
user-defined timer input button and specifying a time interval between meas-
urements. A slider bar is displayed that permits the operator to set the data
interval in seconds.

When a user-defined time interval is set, the original time tag associated
with the first set of measurements is used to establish the date/time of the first
measurement set, and then all other date/time values associated with the
remaining measurements in the file are computed by the DSS using the user-
selected time interval. The time tag for each successive set of measurements is
determined by adding the user-defined time interval to the time tag computed
for the immediately preceding measurement set. The original date/time values

1 I1bid.

11
Chapter 3 Dredge-Specific System

12

are not altered within the pre-recorded data file; however, the newly computed
date/time values are inserted along with the data into the SHIP database.

Reading Sensor Data

The training and reference DSS was first tested on the Corps of Engineers
dredge Essayons; therefore, the sensor data input format is specifically tuned to
this dredge and the output of a data logging computer presently operating
aboard the dredge. The following sensor data are currently accepted into the
training and reference DSS. This same suite of sensor data should be input
into all DSS units; however, it is understood that on some hopper dredges this
suite of sensor measurements may not be currently available.

Data Element

Date

Time

RMS error (of ship’s position)
X location

Y location

Forward draft (of ship)

Aft draft (of ship)

Tide elevation

Port drag am velocity

Port drag arm density
Starboard drag arm velocity
Starboard drag arm density
Port gimbal depth

Starboard gimbal depth

Port draghead depth
Starboard draghead depth
Heading (of ship from Gyro)
Course (of ship)

Water depth (below ship)
Speed (of ship over ground)
Ship weight-hopper doors open
Ship weight-hopper doors closed
Ullage (meter #1)

Uliage (meter #2)

Uliage (meter #3)

Ullage (meter #4)

Hopper door status

Units

Local time

Seconds, from midnight local time
feet

feet

feot

feet

feet

feet (relative to MLLW)

feet/sec

feet

degrees True
degrees True
feet

knots

long tons
long tons
feet

feet

feet

feet
open/closed

The DSS is capable of accepting the above sensor data as a continuous
input stream through an RS232 input port or from a pre-recorded ASCII text
file. The latter mode is normally used for testing the training and reference
Silent Inspector system, and this capability is not expected to be included in

standard systems.

Data received through the RS232 port are in binary format and are nor-
mally received from another computer. When real-time sensor data are
received via the RS232 serial port, the DSS divides the data stream up into
records by treating some number of contiguous bytes as a record. In the train-
ing and reference DSS, this quantity is 127 bytes, with a record being defined

Chapter 3 Dredge-Specific System

Chapter 3 Dredge-Specific System

as a set of sensor measurements all associated with a single time tag. The
format and position of each sensor measurement value within each record are
described in Chapter 6 (“System Interfaces™) of this manual. The input data
stream is first broken into individual records, which are collected in a buffer.
Next, the sensor values within each record are extracted and placed within a
database structure, defined within the DSS system code. The contract ID num-
ber, project name, and dredge name for this project, previously entered into the
DSS by the operator, are then attached to each data record stored in the

DSS database structure. Next, the sensor values in a record are used to com-
pute some additional data values, and all values are cross-checked against a
limits table to assign a data status flag to several of the data values. These
computations are listed below. The newly computed values and status flags
are then attached to the data record in the DSS database structure. Each data
record is then inserted into the SHIP database.

If the input source is a data file, each record is read as a string of ASCII
text. The fields that represent the sensor measurements are extracted from the
string and placed within the DSS database structure. Again, the contract ID
number, project name, and dredge name for this project, previously entered
into the DSS by the operator, are attached to each data record; and the sensor
values in the record are used to compute additional data values and data status
flags. The newly computed values and status flags are then attached to the
data record in the DSS database structure. In addition, the time previously
attached to the data record is disregarded, except for the time of the first data
record read. All subsequent times attached to the incoming records are based
upon the time of the first data record and the time interval between data
records selected by the operator on the DSS control panel screen. This feature
allows for more rapid testing of the training and reference Silent Inspector
system. After a new time is attached to the record, the data record is then
inserted into the SHIP database.

The DSS accepts data records from either the RS232 port or a pre-recorded
data file as fast as the data logging computer can send them and the DSS can
process these data and send them on to the SHIP database. The maximum
input speed for the DSS is faster than one data record per second. In the case
of the Essayons, the data logging computer sends the DSS a new data record
every 10 sec. Currently there is no provision for error checking or synchro-
nization, should data be lost in transmission.

Computation of Additional Data Values

The SHIP database also requires as input some data types that are not pro-
vided by sensors aboard the Essayons. Likewise, it is anticipated that sensors
aboard other hopper dredges may not provide the full suite of measurements
necessary for insertion into the SHIP database. Where possible, the DSS also
must compute the additional data needed by the SHIP database based on the
available sensor data. The following computed data are generated within the
training and reference DSS:

13

14

Computed Data Type Computed From

Average hopper level forward Two forward uliage sensor readings

Average hopper level aft Two aft ullage sensor readings

Average hopper level Average forward and aft hopper level values

Hopper volume Average hopper ullage and hopper volume
curves/equations

Port/Stbd pumps on/off Port and starboard draghead velocities

Port/Stbd material recovery true/false Port and starboard draghead densities

Pump out on/off Pump-out velocity (not provided on Essayons)

The equations for each of these computations are provided in Chapter 5 of
this manual.

Assigning Status Values

The DSS provides the first level of data QA/QC for the Silent Inspector
system. This process is performed by comparing each sensor or computed
data value to an acceptable range for that data value. The status values that
can be assigned are:

Status Abbr. Meaning

ACCEPTABLE OK Sensor measurement is within acceptable limits
OUT_OF_RANGE_LOW LO Sensor measurement is out-of-range low
OUT_OF_RANGE_HIGH HI Sensor measurement is out-of-range high
MISSING NO Sensor measurement is missing

Minimum and maximum acceptable values for each type of data are read
from a file named RANGE.DAT stored within the DSS. This file is an ASCII
text file that may be edited to adjust the values for each type of data. The user
is not intended to have access to this table. Values in this table must be
entered or changed by a systems engineer. The current ranges established for
the training and reference DSS for operation aboard the Essayons are:

Sensor Lower Upper
Measurement Bound Bound
RMS_ERROR 0.0 329
X_COORDINATE 0.0 9_999_998.0
Y_COORDINATE 0.0 9 999 998.0
FORWARD_DRAFT 10.0 35.0
AFT_DRAFT 15.0 37.0
TIDE -5.0 35.0
PORT_DRAGARM_VELOCITY 0.0 50.0
PORT_DRAGARM_DENSITY 1.0 3.0
STBD_DRAGARM_VELOCITY 0.0 50.0
STBD_DRAGARM_DENSITY 1.0 3.0
PORT_GIMBAL_DEPTH 0.0 90.0
STBD_GIMBAL_DEPTH 0.0 90.0
PORT_DRAGHEAD_DEPTH -20.0 90.0
STBD_DRAGHEAD_DEPTH -20.0 90.0
HEADING 0.0 359.9
COURSE 0.0 359.9
GROUND_SPEED 0.0 16.0

Chapter 3 Dredge-Specific System

WATER_DEPTH 0.0 90.0
HOPPER_ULLAGE 0.0 50.0

If a measurement value exceeds its upper bound, its corresponding status
value is set to OUT_OF_RANGE_HIGH (HI). Similarly, if it is less than its
lower bound, its status value is set to OUT_OF_RANGE_LOW (LO). If a
measurement is missing, the status MISSING (NO) is assigned to it. Other-
wise, the measurement is deemed acceptable, and its status value is set to
ACCEPTABLE (OK). These status values are stored within the DSS in the
DSS database structure; however, they are inserted into the SHIP as integer
values from O to 3 as shown below.

Status Database Value
ACCEPTABLE 0
OUT_OF_RANGE_LOW 1
OUT_OF_RANGE_HIGH 2
MISSING 3

The data status values are used to color code the display of the data values
within both the DSS and the SHIP components. In addition, the status values
are also used in determining which data are acceptable to use in some compu-
tations within the SHIP component.

Data Display

The Training and Reference DSS displays on its control panel screen the
sensor data being inserted into the SHIP database during processing. Each
sensor value is displayed with a background color that indicates its associated
status value. These are the data which are being inserted into the SHIP data-
base. The “Remaining” box shows the time remaining until the next data set,
which occurs at 10-sec intervals.

If the DSS is receiving data, but the SHIP component is not operational
and/or otherwise unprepared to receive data from the DSS, the DSS will
attempt to open the SHIP database and insert data records, but will be unable
to do so. If the DSS continues to try and open the SHIP database but is
unsuccessful for approximately 1 min, the DSS program will then terminate
itself, in which case it will need to be restarted after the SHIP database comes
on-line.

Data Manipulation for System Testing

The training and reference DSS has a unique feature which will not be
present on any standard operational DSS units. The purpose of this feature is
to allow for testing of the DOSIS system during its development so as to pre-
vent breakdown or corruption of the system by unacceptable or missing data.

Chapter 3 Dredge-Specific System

15

16

This feature allows false values or no data to be inserted into the SHIP data-
base for each data value displayed on the DSS data monitoring screen.

Beside each data value displayed on the DSS screen is a set of four buttons
marked OK, LO, HI, and NO. By clicking on any one of these buttons, the
operator can change the status value associated with the corresponding sensor
measurement. Clicking on a status button performs the following: (a) it
changes the actual data value that is inserted into the SHIP database, as well as
the status value associated with it; and (b) it changes the background color
used to display the measurement value on the DSS screen to match the value’s
status. If the operator changes the status of a measurement to LO, the meas-
urement value that is inserted into the SHIP database is set to the minimum
value of its acceptable range, obtained from the RANGE.DAT table, minus
0.1. If the operator changes the status of a measurement to HI, the measure-
ment value that is inserted into the database is set to the maximum value of its
acceptable range plus 0.1. If the status is changed to NO, no value for that
data type will be inserted into the SHIP database, and a MISSING status value
will be inserted. Changing the status back to OK allows the incoming or
recorded value entering the DSS to again be inserted into the SHIP database.

It should be noted that the actual incoming or recorded data values entering
the DSS may also be out of acceptable data ranges. In these cases, when OK
is pushed, the actual out-of-range data value and the DSS-assigned status value
will be entered into the SHIP database. The LO, HI, and NO buttons on the
DSS data display screens are therefore data override buttons. The status and
data values inserted into the SHIP database remain changed for that data type
until another button associated with the measurement is clicked.

Inserting Data into the SHIP Database

Once the DSS database structure containing the converted sensor measure-
ment, calculated values, and data status values has been created, the informa-
tion is inserted into the SHIP database. The DSS actively seeks to insert data
into a SHIP database whenever the DSS is operating and the control panel
screen is displayed. If a SHIP component is on-line at this time, new data
records will be inserted into the SHIP database as quickly as the DSS can
receive and process them. Presently this capability is faster than one record
per second; however, aboard the Essayons, the ship’s data logging computer
sends the DSS data records every 10 sec; therefore, data are inserted into the
SHIP database at the same frequency.

Data insertion into the SHIP database is performed by the DSS using a
database interface program named Database. Activating the interface calls a
stored procedure, named Insert_Dredging Data, which resides within the
Sybase (SHIP) database. This stored procedure transfers the contents of the
DSS database structure to the SHIP database and stores them within the
Dredging_Data table.

Chapter 3 Dredge-Specific System

For more information conceming this DSS-to-SHIP database interface, see
Chapter 6 (“System Interfaces”) within this manual. A complete description of
the SHIP database tables, their content, and structure is contained within Chap-
ter 4 (“System Database”) of this manual.

Chapter 3 Dredge-Specific System 17

18

4 System Database

Database Engine

The Silent Inspector system’s central database resides within the SHIP and
SHORE components. The database structure in each component is identical.

The system’s database is built and accessed with the Sybase relational
DBMS, which is commercially available for the Unix operating system. This
is the database engine around which the Silent Inspector system has been built.
The Sybase DBMS works on a client-server basis with all programs with
which it interacts. The database is designed so that multiple functions may
(and do) occur simultaneously. Such functions include:

Insertion of data into the database by the DSS

Displaying the newly inserted data for the user

Calculating additional data, such as TDM and dredge state, from inserted data

Copying data into other appropriate database tables

Calculating/summing the time certain dredge activities occur over a load, day, or project
Displaying recorded data as requested by the user

Conducting portions of the data backup and archiving functions

This chapter describes how the Sybase DBMS has been specifically struc-
tured to perform the Silent Inspector operations.

Database Structure

The SHIP database consists of a number of data tables and stored proce-

" dures. Two types of tables exist within the database: user tables and system

tables. User tables are those tables which accept or handle either information
input by the user through the system’s setup function, or sensor and calculated
data and data status values inserted by the DSS or calculated within the SHIP
component. System tables are ones that are built, updated, and maintained
automatically by Sybase. They contain information on the data contained
within the DBMS. For example, there is a system table that contains informa-
tion about all of the tables, both user and system, known to Sybase. Stored
procedures are essentially Sybase subroutines stored within the DBMS which
are called by the system’s central program code to perform certain operations

Chapter 4 System Database

on the database. The central program code, which controls the automatic pro-
cessing of the newly inserted data and activates the necessary subroutines and
stored procedures to calculate additional parameters (such as the load number,
TDM, and the dredge state), store the newly computed values, and trigger
automatic reports, is called the real time kemel (RT kernel).

There are currently 21 user tables, 13 system tables, and 21 stored proce-
dures within version 1.0 of the SHIP database.

Figure 1 provides an overview of the movement of data through the Silent
Inspector system. The system has four primary data input or transfer inter-
faces, identified in Figure 1 with the letters a, b, ¢, and 4. Interfaces a and c
are between computers, whereas interfaces b and d are user interactions with
the DSS and SHIP components which allow the user to input data on certain
parameters into the system via graphical user interface screens within the DSS
data entry panel, and the SHIP setup module. The output of data contained
within the database user tables to a SHORE component using the system’s
archive software module is not depicted. The parameters which are transferred
over the computer interfaces (a and ¢) and specifications for those interfaces,
are described in detail in Chapter 6, “System Interfaces.”

i Data Flow Overview

In Figure 1, rectangles with curved ends represent user tables within the
database, rectangles with pointed ends represent software modules, true rectan-
gles within the SHIP component box represent computations or actions per-
formed by RT Kernel, and rectangles with wavy bottoms represent reports or
graphical displays. Diamonds within the DSS box indicate computations
occurring within the DSS. Note that the user must enter much of the project
and dredge-related information via the Setup module, whereas the measured
sensor data come from the DSS. RT Kernel is the systems central software
program which controls the processing and routing of all incoming data. The
flow of data through the user tables can be traced in more detail using Table 1
contained within the next section, “User Tables.”

User Tables

Entries into the user tables come from one of three main sources: the user
through the setup or downtime modules, insertion by the DSS (Dredging_Data
table only), or from computations or data transfers controlled within RT Ker-
nel. Data values contained within the tables are called data elements herein.
Each table can be thought of as a spreadsheet, where each data element is a
column within the spreadsheet, and each new entry of values for the data ele-
ments fills a row. Each row represents data associated with some time or
event (such as a change in the dredging state). The user table names, type of

Chapter 4 System Database

SISOQ UIYIM MOJ} BIED JO MBIAIBAQ *| Inbig

[oo g esneoeug B coT T ?

I
I
A ' . |
r SJUBA® BLUTUMOP MelAeH T||| _/B yodes . |
Area duy yodes uud ‘Aep ! !
ﬁ ' 10 duy Jo pue J; , Slold |
] , AlojsH ewi] i
0 % , I
) veay~jesodsigpeo e I . _
uone)s peo Buibpesp eindwon | Jo uoRoejes Jesn |
| eloia) _ et |

efe) syepdn .

swigumoqg ‘pejostep ewgumog Ji | . " :

alvis o . "

ees ebpaig 'WaL | .
E : “ON peotendwog | _
@ avol e 5 ' "

ebpeu j _
v _efpeia) ‘ pmp——T wr |
! ezifeniuj ‘ K !
o) . e |
.. —~ X Bujwoou Aedsiq Areq |

— ! ejep pesseoadun ,
eely jesodsig . 166 % puL \ » "
. ' erels ebpeid ‘WAL g)
.................. . y |
A !
1
dnli3as v \W ejeq buibpaiqg v E S1HOd3d |
% !
A L “
p dIHS 9 |

; < 19sN
q
ejep
Josn N paiols
| abpaip uo
SSd ¢ e 196607 elRQ

20

Chapter 4 System Database

data in their contents, and primary data input sources are summarized as

follows:

Table Name
Crewmember
Disposal_Area
District
Dredge
Landmark
Location
Project
Station
Dredging_Data
Dredge_Crew
Downtime

Load_Disposal_Area
Load_Station
Load_Table
Location_Station
Project_Disposal_Area
Project_Dredge
Project_Landmark
Project_Station
Project Summary
State

Table Contents

Names, rank, and ID

Names, boundary coordinates

Names, abbreviations

Vessel information

Names and coordinates

Name

Names, project information

Dredging area names, boundary coordinates
Measured data and data status

Assigns crewmember to project and dredge
Downtime events and causes/annotation

Assigns a trip (load) to a disposal area
Assigns a trip (load) to a dredging area

Trip report summary information

Assigns a location to a dredging area
Assigns a disposal area to a project

Assigns a dredge to a project, sets limits
Assigns a landmark to a project

Assigns a dredging area (station) to a project
Job-to-date report information

Trip data for whenever a state change occurs

Input Source
Setup module
Setup module
Setup module
Setup module
Setup module
Setup module
Setup module
Setup module
DSS, RT Kernel
RT Kernel

RT Kernel/Downtime
module

RT Kernel

RT Kernel

RT Kernel

RT Kernel

RT Kernel

RT Kernel

RT Kernel

RT Kernel

Job Report module
RT Kernel

The individual data elements contained within each user table are shown in

Table 1 on the following pages. Shown in this table are the user table name,
purpose, specific data elements contained within each table, units required for
the data elements, maximum character length, null condition, input source, and
output destinations. '

The input source listed in these user tables is the location from which the
data value or information for each data element is obtained when it is inserted
into that particular table. For instance, the Dredge (name), Project (name), and
Contract ID are initially inserted into the DSS component of the system by the
user. The DSS inserts this information, along with required sensor data and
status values, into the Dredging_Data table within the SHIP database; there-
fore, the DSS is the source of these values for that table. These values are
then distributed (copied) to 12 other tables when values for othér data elements
are also inserted into those tables. The Dredging_Data table, or another table,
then becomes the input source for these data elements. When the user is the
input source via the setup or downtime modules, those modules are listed
under the input source column. RT kemel is the source of values computed
within the SHIP component.

While values for each data element can only have one input source from
which they are inserted into a user table, the values within a user table may be
sent or copied to multiple destinations. The Dredge (name), Project (name),
and Contract ID data elements within the Dredging_Data table are good exam-
ples of this. Each is sent from the Dredging_Data table to several other
tables. These three data elements make up the unique identifier for recalling

Chapter 4 System Database

21

(g1 jJo L 190Ys)

OUON dmeg ou € xe} NOILvYIAIHEaY

BUON dmeg ou 2€ ey JNVYN

sjols1q stesuiBug jo sdio) jo suoneireiqqe pue seweN :esoding

10141s1a -elqel

(uogeindwon seesy™ [esodsiq HoeyD) |ewey 1Y dmeg sek 8 (wequen) 1o} AP0 AHVYANNOS
(uoneindwioo seesy ™ [esodsig %oeyo) |ewey 1Y dnjeg sek 8 (uequien) 1084 X v0 AHVYONNOS
(uoneindwod seesy [esodsiq Yo8yD) jeusey 1Y dnjes ou 8 (veqwen) 108} A €0 AHVANNO™
(uopemindwods seely” [esodsigT30eYD) |euie) 1Y dmes ou 8 (vequre) 108} X €0 AHVANNOE
(uonelndwos seelty [esodsiq ¥oeYD) [ewey 1Y dmeg ou 8 (wequen) 108} A 20 AHVANNOS8
(uoneindwos seely” [esodsiq ¥oeyo) [ewied 1Y dnjes ou 8 (1eqwe) 1064 X 20 AHYANNOS
(uopEindwoo seeiy ™ [esodsiGHOYD) jeule) 1H dmes ou 8 (veque) 1e8) A 10 A”HVANNOSE
(uoneindwoo seely ™ fesodsiQPEYD) [ewey LH dmes ou 8 (veque) 108) X 10 A"VaNNno8
(uogendwoo seely |esodsiq ¥o8YD) [ewey 1Y dnjes ou FA> wel JNVYN
seeJe Jo Jno/ul jesodsip/BuiBpelp eujwielep o} [euie) LH Aq pesn issuBpUNOq leY) pue sedle _u»omn_v 1517 :esoding

V3YV 1vSOodsia :eiqel

BUON dnjeg ou v 8} ai

QUON dnjeg ou YA xe} MNVYY

SUON dnjeg ou 2e e} INVYN 1SV

euoN dnjeg ou 2e ey JNVYN LSHId

@l pue “juel ‘seuweu Joquiewmesd isi :esoding

HIGNINMIHO ‘eiqel

suopeunseq indino @ainog indu| | s)nNN yibue sHun sjuewe)3 eleq

so|qe] Jasn aseqeleq diHS 10 siuauod

I aiqelL

Chapter 4 System Database

22

(g1 Jo Z 199ys)
SUON dnjes ou 8 109} JONVLSIO 3504 14vHa
euoN dmes ou 8 H3IMOJ3ISHOH
8UON dmes ou 8 108} H1ON31
QUON dnjeg ou 8 198} Wv3d
euUoN dnjeg ou 14 Jebejul a310Nd1SNOD HV3IA
“8uopN dnjes ou 2€ xe) (seweu) SHAINMO
8uoN dmjeg ou 12 8} (eBpeup jo 8dAl) 3dAL 3D03IHA
BUON dnjeg ou 2e e} JNVYN
(penunuoo) seBpeip uo uoneurioju} :esodind
39034a :elqel
UON swpumoq seA Sse e} INIWWOOD
8UON swpuMoQ ou .l xe} IsNvo
8UON jewiey iy ou v Jebaju ON agvo1l
8uoN jewey 14 ou 8 eseqfs 3WIL 31Va aN3
eUON Jousey 1Y ou 8 aseqfs INIL 31Va 1HvVLS
euoN eeg Buibpeiq ou 2€ ey (eweu) 3003HA
auoN eeq buibpeiq ou 2 xey (eweu) 193rOHd
8uoN ejleqg buibpeiq ou 4> el dl"LOVHLINOD
SJUBA® SWUMOP alejouue pue)si| :esoding
INIINMOQ ‘elqel
suoneunseq IndinQ aoinog induj | synN | yibuen suun sjuswa|3 vleq

(peanupuo)) | ajqel

23

@
7]
@

.
5]

o
£

2
[
>

n

<
-

2
=
a

=

O

(€1 jo € 100ys)
OUON dmeg ou 14 8} al
euoN dnjeg ou 2e ey (eweu) 3903Hq
eUON dnjeg ou 2e 8y (ewreu) 153rOHd
euoN dnjeg ou 2e e} GI"LOVHINOD
- eBpeJp Jo malo uo uonewioju| :esoding
M3YD 3903HQa ‘eiqel
eUON dnjeg ou 8 sjouy Q3avo1 a3ads
8uoN dnieg ou 8 sjowy iHOIT @33ds
euoN dnjeg ou 8 suo} Buo LINIW3OVdSIa XYW
euoN dnjes ou 8 suoj} Buo LNINIOVIdSIA ALdNT
BUON dnieg ou. 8 spJeh oiqno ALIOVdYO IWNTOA H3ddOH
BUON dnjeg ou 8 suo} Buo ALIOVdYO aQvO1 H3ddOH
8uoN dnjeg ou 8 188} 3JONVLSIA L4V H3ddOH
8uUON dmjeg ou 8 188} JONVLSIQ 3404 H3ddOH
oUON dnjeg ou 8 108} Q3avoT 1dvdd
8UON dmeg ou 8 106} LHOIT 14vHa
8UON dmeg ou 8 leg) JONVLSIQ L4V LdVvHQ
(papn|ouod) sabpalp uo uonjew.ioju] :asoding
390344 :eiqel
suogeunsa Indino aoinog Induj | spnN Yibuo shun sjuawalg ejeq

(penunuod) | sjgelL

Chapter 4 System Database

24

(1 jo ¥ 1904s)
louiay 1Y ssa ou 4 ON ‘IH ‘071 %0 SNLV1S 1HOd Hld3Q Qv3HOVHA
o|qe} elels ‘jeussy Y ssa sek 8 198} 140d HLd3G av3HovHa
jewey 1y ssa ou 2 ON ‘IH ‘07 %0 SNLYLS 3SHNOO 13SS3IA
lowey 1H ssa sok 8 eru] seaibep 3SHNOO 13SS3AA
Jowsed 1Y ssa ou 2 oN ‘H ‘01 %0 SNLYLS ONIQVIH 13SS3A
e|qe; elEls ‘lewey 1Y ssa sek 8 eny| seesbep ONIQV3H 138S3A
lewsey 1Y ssa ou 4 ON ‘IH ‘07 Y0 SNLY1S Q33ds 13SSIA
e|qe; elEls ‘jlewe)) 1Y ssa seh 8 siouy Q33d4sT13ssaA
lewey} 1Y ssa ou e ON 'H ‘o1 %0 SNLV1S 14V 14vHa 13SS3A
e|qe] elEls ‘jlewe) 1y ssa seh 8 lee} 14y LdvHaT13sS3A
lewsy| 1y ssa ou 2 oN ‘iH ‘07 Y0 SNLVLS GHYMHOL 1dvHQ 13SS3A
e|jqe; elEls ‘lewey 1y ssa seA 8 108} QHVYMHO4 ™ LdvHA13SS3IA
Jewey) 14 ssa ou [ON ‘H ‘01 %0 SNLY1S A 13SS3A
o|qe] ejels ‘lewe) 1Y ssa seh 8 (vequen) 108} AT13SS3A
jewe)| 1Y $sa ou 2 ON ‘IH ‘07 %0 SNLYLS X 13SSAA
-6jqe} elEls lewie) 1Y ssa seh 8 (usquien) 108y XT13SS3A
se|qe} e|dinN ssa ou 8 oseqis JNILT3Lva
se|qe; ejdnny ssa ou 2e we} (sweu) 30034Q
sejqe) ejduniN ssa ou e xe (eweu) 153roHd
se|qe; ejduin ssa ou 26 o) Gl LOVHINOD
(penunuod) gsq woiy ejep 1deooy :esoding
V1va DNIDA3Ha :eiqel
suoneuse(Indino @0inog 1ndy| S|INN yibue syun sjuawag vleq

(penunuo)) | sjqey

25

Chapter 4 System Database

(c1 jo § 190ys)
(uonejnojes eyers ebpeup) jewe) 1Y ssa ou L ueejooq NO LNO dWNd
(uoneinofes eyers ebpeup) jewe) LY $sa ou L uee|ooq Qg.LSTIVIHALYW diNnd
(uonenoes eels ebipesp) jswe| 1Y ssa ou L uee|ooq 1HOd ViH31LVW dWnd
e|qel ejEls ‘lewey 1Y ssq ou L ueejooq Qa1s NO dWnd
e|qe) ejE1S ‘lewe)] 1 ssa ou L ueejooq 14O0d NO dWnd
lewey LY ssa ou L uee|ooq N340 HOOAQ Y3ddOH
[ewey| iy ssa ou 4 ON ‘H ‘07 %O SNLVLS 3aIL
e|qe} ejElS ‘lewey| 1y $Sa sek 8 198 3aiL
jewsed 1Y ssa ou 2 ON ‘IH ‘01 %0 SNLVLS Hld3a H3LVM
lewey 1Y ssa se 8 106} HLd3a "aLlvm
jewe) 1Y ssa ou 2 ON ‘IH ‘01 %O SNLYLS I9VTIN H3ddOH
leusey 1Y ssa sok 8 loe} 39V11N H3ddOH
jewey Ly $sa ou 2 ON 'IH ‘07 %O SNLYLS AWNTOA YAddOH
jpwsey LY ssd sek 8 spJef oigno IANTOA H3ddOH
lewe) 1Y ssd ou 2 ON ‘H ‘01 %0 SNLY1S 14¥ 13A37 H3ddOH
jewey| IH Ssa sek 8 108} 14v 13A37 H3ddOH
lewsey it ssa ou 2 ON ‘H ‘01 %0 SNLVLS QHVMHOS 13A3T H3ddOH
ey 1y ssa sek 8 1e8} QHVMHO4 13A37 H3ddOH
jousey 1y ssa ou 2 ON 'H ‘01 %0 SNLlv1lS agls Hld3Ia avaHoOvHa
e|qel elEls ‘fewieyl 1Y Ssa sek 8 109} @81S"HLd3G avaHoOVHA
(penunuod) ssq woy elep ydeooy :esoding
v1iva DNIDa3Ha :eiqel
suoneunsaq indino @ainog induyj SHNN yibuan s|yun sjuswa|g ejeq

(panunuo)) 1 aiqelL

Chapter 4 System Database

26

(€1 4o 9 100yS)
8uUON geg Buibpeig ou 2e e (eweu) 3903HQ
BUON eieg Buibpeiq ou 2€ xe) (eweu) 1053rodd
euUON eeq buibpeig ou ce e} Q" LOVHLINOD
{penunuo9) 10efoid e uo 1equinu peoj yoee o} (eese Buibpelp) uoneis e cm_MQ< :esoding
NOLLV1S avO1 :ejqel
8uoN [puiey 1y ou 8 eseqis INIL 3LVA 1HVY1IS 1vSOdsId
euoN eely [esodsig ou 2e e} (eweu) y3dy 1VSOdSIA
euoN jewey 1y ou ¥ Jebeajul ON avol
auoN ejeq Buibpeiq ou > xe) (eweu) 39q3HQ
6UON eeq” buibpeiq ou 4 e (eweu) 103rOYHd
SuoN ejeq bBuibpeiq ou 43 ey QI LOVHLINOD
10e[o4d e uo Jequinu peo| yoee o} vese _qoloan_v e :m_.m»< :esoding
V3HV 1vsSOodsia avol :eiqel
@uoN dnjes ou 8 (uequen) jee) A"NOLLISOd
SUON dnjeg ou 8 (vequen) 106) X NOILISOd
BUON dnjes ou 2 xe) INVN
s)lewpue| suliew uo uoljewoju esoding
NHVINANYT :ejqelL
spodes qop ‘Ajreq jowey 1y seA 8 suo} Buoj WalL
e|qe; AElS ‘lewey 1Y jewey 1y seA YA e} 31vils
e|qe} peo jewey 1y sek v Jebeyut ON avol
(pepnjouod) gsg woy ejep ydeocoy :esodind
v1iva ONIDa3Ha -elqel
suoneunseq Indino 8oinog indu] | S|NN yibue] slun sjuowa|3 eleq

(panunuod) 1 9jgelL

27

@
w
«
K=}
g
©
o
£
o
2
w
>
(%)
<
N
2
Q.
@
=
(@)

(c1 Jo £ 109yg)
vodey dui sek 552 mey ININNOD
yodey du} lewiey Iy ou 8 suoj Buoj Wal
vodey duj [owey 1Y ou 8 senulw INILIVIOL
vodey du), jewey 14 ou 8 selnuiw INILTNMOQ
vodey duy jewey 1y ou 8 senuIw INIL ALIWI ONITIVS
uodey duy jewey 1y ou 8 senuIw INIL ONIdWNA
uodey duj pwey 14 ou 8 senuiw 3WIL 1IN ONITIVS
vodey du) jewey 1y ou 8 selnuiw JNILTONINENL
Hodey duj jowiey 1Y ou 8 sejnuIw ANIL ONIdWNd
vodey duj ereq” buibpeiq ou 8 eseqis 31va
vodey duy lewey 1Y ou 14 Jebejul ON~avOo1
uodey dujp ereq Buibpeig ou 2 ey (sweu) 39034a
uodey du) ejeq buibpeig ou 2e e (eweu) 103rOHd
yodey duj eeq Buibpeig ou ze xe} Al LOVHLINOD
uopew.ojul Jodes diy jo uoneinqe} :esoding
374v1 avo1 :eiqel
8UON lousey 14 ou 8 eseqs 3NILT3LVA LHYLS NOILVLS
8uoN uonels ou 2> xa) ‘(eweu) y34Y NOILVLS
OUON |auidy 1Y ou 4 hwmmuc_ OZID<O.._
(pepnjouod) 10aifoid & uo Jaquinu peoj yoea o) (ease Buibpatp) uonels e :m_w.w< :asoding
NOILVLS avo1 :aiqel
suoneunsag indino @9.nog jndu| SIION yibuan sHun sjuawa|gl eieq

(panunuod) | 9jqeL

Chapter 4 System Database

28

(e1 o g 1904s)
(uogendwos eelsy [esodsigoeyo) lewey LY voly [esodsiqg ou 2e ey V3"V 1¥SOdsIq
(uoneindwios eesy [esodsigOBYD) [BUIe 1Y eleq buibpeiq ou 2 %8} (eweu) 193rOHd
(uoneindwoo eesy [esodsigo8YD) [ewiey 1Y eyeq buibpeiq ou 2 xe) QI LOVHINOD
Buuted) 19811U00/6WeY J00f0id B O} BOJE |esodsip e uBissy :esodingd
V3"V 1vSOdsid 103rodd -eiqel
euoN dmeg sek 8 eseqfs 31va HSINIH
eUON dmeg sek 8 eseqig 31va 1HvlS
euoN dmeg sek ce xe} HOLOVHLNOO
eUON dnjes ou ! e} 3dAL 3IHL
8uoN dmeg ou € e} 1oidLsia
QUON dnjeg ou 2e e} JNVYN
BUON dmeg ou 2 we) Qi LOVHLINOD
uoneuuiojuj 10eloid oiseg :esoding
103roHd :elqel
BUON uonels ou 2€ e (eweu) NOILVLS
SUON uoneooy ou 2 el (eweu) NOILVOOT
eiqe) uolels oy} UJ pels)) uonels Yoee o) eweu uopedo) e ubissy esoding
NOILVLS NOILYDO1 :eiqeL
8UON dmeg ou 2e e} E)
(eese BuiBpeip) uonels Youe o} aweu e ubissy :esoding
NOILYOO1 :elqel
suoneunseq ndino eoinog indu] | siaN | yibBue suun sjuswefy eleq

(poanupuod) | 9lqelL

29

@
(7]
«

.
©

o
=
2
w
>

1]

<
o

2
=%
©

£

o

(g1 Jo 6 100ys)
8UON }ewpue ou 2e e (eweu) YHYWANV
@uUON ejegBuibpeiq ou 2e e} (eweu) 1 53roYd
eUON eeq Buibpeiq ou 2e e} G LOVHINOD
Jied @| 1oenuoo/eweu 10eloid e 0) ylewpue) sulew ul:m_»w< :esoding
MNHYVNANV] 103rodd :eiqel
" @UON dnjes seA 552 xe) INIWWNOD
OUON dnjes seA 62 8} salv 39034a
(uoneinoeo QL) tewey 1Y dnieg soh 8 Jeyy/swelb ALISNIQ SSYW HILVM
(uogejnofeo NQL) jewey 14 dnieg sek 8 Jey|/swelb ALISN3Q SSYW TVIHILYW AHA
SUON dnieg sek 8 uw/seesbep LW NYNL
BUON dmeg sek 8 108} 1IN WIHL
auoN dmeg sek g 198} LINIT ©vHa
euoN dmeg sek 8 198} LIWIT 14vda
euoN dnieg sek 8 108} 3ONVH3TOL Hld3a
8uopN dmjeg seh 8 siouy 3ONVHI10L Q33dS
eUON dmeg sek v e} NIVLdvO
8uoN gjeg Buibpeiq ou 2e ey (eweu) 39Q34A
QUON ejeg Buibpeiq ou 2e el (eweu) 103rOHd
8UON eleq Buibpaiq ou 2€ 8} QI LOVHLINOD
Jed g} 10enuoo/aweu Joasfoid e o) sentedosd abpaup pue abpaip al:m_mm< :@soding
39034A 123rodd :°iqel
suoneunsaq indino @o4nog induj | s|InN yibua spun sjuswa|3 eleq

(panunuod) | ajgelL

Chapter 4 System Database

30

(c1 jo 01 100yS)

vodey qop lowsey 14 ou 8 senuiw INILSINIWIIZ IVHNLYN ONISOddO

yodey qor jpweyt 1Y ou 8 selnuiw 3NIL IDVHOHONY HO JHYHM

vodey qor jowey 1Y ou 8 sejnujw 3INILTS3ITddNS ANY 13Nd

uodey qop fewsey| 1Y ou 8 sejnuiw 3NWIL G3aNI43Q 39 oL

vodey qor lewse)| 1Y ou 8 selnuiw JNIL LSO

yodey qor lewey| 1Y ou 8 selnuiw 3WIL 3AILO3443 NON

vodey qor lewey 14 ou 8 sejnujw ANIL ALIWI ONINIVS

vodey qor jewey 1y ou 8 sejnuiw 3NIL ONIdWNA

Hodey qor jowe) 1Y ou 8 sejnuiw JNILTTINS ONNIVS

uodey qor jswey Ly ou 8 sejnuiw INIL ONINENL

vodey qor jowey 1Y ou 8 sejnuiw INIL ONIdWNd

vodey gor fewey 14 sek 8 eseqfg 31V ONISO1D

vodey qop fewse)| 1Y ou 8 eseqis 31VQ ONIN3dO

vodey qop ereq” buibpeig ou 2e ey (sweu) 39034Q

Hodey qor eleq buibpeiq ou 2 xey (eweu) 193r0”d

vodey qor eleq buibpesg ou 2e e} al" LOVHINOD

(penunuod) uonewuoju; podes gol jo uoyejnqe L :esoding

AHVAWNS 1O3roHd :eiqey

(uoneindwoo uoElS YD) [ewie) LY uoneis ou [4> xey (eweu) NOILYLS
(uogeindwoo uorEIS™HBYD) jewey LH eleq Buibpeiq ou 2€ xe) (eweu) 1953rodd
(uogeindwoo uogels H0BYD) eUe) LH eleq” buibpaiq ou 2) e} QI LOVYINOD
sed q| 19enuo0s/ewey Joeloid e o) (eese BuibBpelp) uonels u..:m_nn< :esoding

NOLLVLS 1O3roHd :eiqel

suoneunseq indin® aoinog Indu| | s|INN yibuen siun sjuewe|3 vleq

(panunuo)) | a|qeL

31

@
(%2}
@
K]
g
©
Q
£
2
w
>
»n
~
b
2
a
o
=
(&)

(g1 Jo L1 1904S)

yodey duj ereq buibpeiqg sek 8 (uequen) 1e9) X 13sS3A
podey duj ereg buibpe:q ou 8 eseqfs INIL 3LVA LYVYLS
Uodey duy lewsey 1Y ou v Jebayul ON"avol
vodey duj eleq buibpeig ou ze o) (eweu) 39a3HA
yodey duj eleq Buibpeiq ou 2 we) (eweu)] 53rOHd
vodey duj eleq buibpeiq ou 2e xe} al" LOVHINOD
(penunuoo) yode: duy eyy ul esn Joj ‘ejers BuiBpeip meu youe Jo LivIS oY) B senjeA Jo uonenqge) :esoding

31V1s ‘eiqel

uodey qor [owey 1Y ou 8 suoj buoj d3aNIv.L3d SNOL
vodey qop [ewey iH ou 8 Aeuow 31NNIW H3d 1S00
vodey qop dnjeg ou 8 sJejjop 1S0O 3Lvg oL gor
uodey qor dnjeg ou 8 sJejjop 1SO0 Q31VWILS3
uodey qop [ewse} 1y ou 8 sejnuiw INIL SNOISITIO0
vodey qop |puisy 14 ou 8 sejnuity INIL NOILYSS3D
yodey qop jouiey 1Y ou 8 senuiw AWIL SHIVdIY HOrVIN
vodey qop jeusey| 14 ou 8 seInuiw INIL SNOINVTIZOSIN
Uodey qop lewe) 14 ou 8 selnuiw JNILSTIHA 1vog ANV 3Hid
Hodey qop [euiey 1Y ou 8 senuiw NI AV
vodey qop jeussy 1Y ou 8 senuiw INILTSHHOM NIIML3E HIJSNVHL
vodey qor jouse) 1Y ou 8 seInuiw JNIL SHIVdIY ONILYHIJO HONIN
uodey qopr [puiey 1Y ou 8 senulw JNIL S3OAIHE ANV Ol3dvdl
(pepnjouod) uonewriojul Jodal qol jo uoneinge] :asodind

AHVWWNS 103rodd :eiqel

suoneunseg ndino @o4nog induj SIINN yibuan spun " sjuswaly Bleqg

(panuiuo)) | ajqeL

Chapter 4 System Database

32

(c1 jo z1 190YS)
(uoneindwoo uogeIS HoeYD) |BUIey IY dmeg ou 8 (weque) 108y X €0 AHVANNOg
{uoneindwoo uonelg H0eyD) |Bwey 1Y dnieg ou 8 (uequie) 108} A 20 AYYANNoAd
{uogeindwos uogels Hoeys) |ewey 1Y dmes ou 8 (uequen) 108} X20 A”HVANNOQ
(uogeindwoo uonels Hoeyo) jswey 1Y dnjeg ou 8 (weque) e84 AT10 A"YVANNOS
(uogendwos uogEls dPeYs) Pwey 1Y dnjes ou 8 (uequie) 108y X 10 AHVYANNOS
(uoneindwoo co_u.m._wlxomcov jewey 14 drjeg ou ce xe} INVYN
(penunuod) (eese BuibBpeip) uolels e o) seleulpiood Aepunoq subissy :esoding
NOLLVIS :elqel
uodey duj loutey 1Y ou L xe} Jivis
uodey du| eeq buibpesq sek 8 108} 3aiL
Hodey du) ereq Buibpeiq seA 8 108} Q81S NOILYAT13 av3HOvHd
yodey duj eleg buibpeig seh 8 108} Q81S Hld3d aQv3HOvHa
yodey duj ejeq buibpeiq ou L ueejooq SNLYLS dWNd agls
yodey duj eleq Buibpeiqg sef 8 198} 1HOd NOILYA313 av3HOvHA
yodey du) eeq Buibpeiq seA 8 198} 1HOd Hld3d avaHovda
yodey duj ejeq Buibpeiq ou L ueejooq SNLYLS dWNd 1HOd
Hodey duj eeq buibpeiqg seA 8 108} 1dv 14vda 13ss3A
yodey duj ejeq buibpeiq sek 8 109} QHVYMHOL ™ LdvHa 13SS3A
uodey du} ereq” buibpeig sek 8 siouy d33ds 13SS3A
vodey duj ejeq buibpesq seh 8 enu) seeibep ONIAVIH 13SS3A
vodey duj eleq buibpeig seA 8 (Heque) j08) A 13SS3A

(pepnjouod) uodes di ey

u) @sn loj ‘ejeys BuiBpeip meu yoee jo MBS 8y} 1e sanjeA jo uoneinge] :asoding

3lvis :elqej

suoneunssq ndino

@2inog Indu|

ybua

suun

sjuewej3 vleq

(penupuo)) | sjgel

33

@
(7]
I

E
©

[a]
=
2
o«
>~

(]

<
—

2
Q.
©

K=

(&)

(g1 jo g1 190yg)

(uonelndwos uopels HoeyD) jewey 14 dnieg seA 8 (vequen) jee) A 0L”AHYANNOS
(uopeindwos uonels™eYD) jewey 1Y dries seh 8 (vequen) 108} X 0L~ A"HvANNOg
(uoneindwos uogErg™¥BYD) |eWey 1Y dnieg sef 8 (uequen) 108} A 60 AYYANNOAd
(uoneindwos uogEIS HHOBYD) [BUIeH LH dnjeg seA 8 (vequen) je8) X 60 AHVONNOE
{uogeindwos uopEIS HPBYD) [Bwiey 1Y dnjeg se/ 8 (vequren) jeey AT80 AYVANNOA
(uoneindwos uogEISHPBYD) [BLIey 1Y drjeg se 8 (uequen) 108} X 80 A”HVANNOZG
(uogeindwoo uopaig™Hoeyd) jeusey 1Y dnies seA 8 (uequen) jee) A L0 AYVANNOS
(uoneindwoo uonels Hoeys) jewey 1y drjeg seA 8 (vequen) 1e8) X L0 AHYANNOSg
(uoneindwos uonelg HoeyD) |BLe) 1Y dnieg sek 8 (veque) jee) A 90 AHVANNoOg
(uopeindwos uonelg¥BYD) [BLIBY 1Y dnjes sel 8 (veque) 108} X 90 AHVANNOS
(uogeindwos uogergPBYD) [ewe) 1Y dnjeg sek 8 (vequen) 1e8) A S0 AHVANNOA
(uogeindwod uogEls HeYD) [suiey 1Y dnieg sek 8 (veque1) 106y X S0 AHYANNOE
(uogeindwoo uoneIS H0BYD) [BUIey LY dnieg sek 8 (wequren) 108y A Y0 AHVANNOS
(uoneindwos uorels™HBYD) [eWed 1Y dmes sek 8 (vequren) 1oy X ¥0_ A”HVANNOS
(uonendwos uogels YoeyD) jeusey 1Y dnieg ou 8 (uequien) 100) A €0 AHVANNOA
(papnjouod) (eaie Buibpalp) uonels B 0} sajeuIplood Arepunoq subissy :asodind

NOILVLS :oIqel

suoneunsaqg Indino @oinog nduj S|INN yibuen syun sjuawa|3 ejeq

(papn[ouod) | a1qel

Chapter 4 System Database

34

| the data related to any specific project. RT Kernel controls this movement or
’ flow of data between the user tables.

| System Tables

The second type of tables within the SHIP database are called system
tables. As mentioned before, system tables are ones that are built, updated,
| and maintained automatically by Sybase. Neither the user nor the system’s
r Ada code directly accesses or modifies the contents of the System tables.
‘ These tables contain “meta-data,” which are data about the data or tables
| within the DBMS. The system tables presently contained within the database
are:

Table Name
sysalternates
syscolumns
syscomments
sysdepends
sysindexes
syskeys
syslogs
sysobjects
sysprocedures
sysprotects
syssegments

systypes
sysusers

A complete description of all the system tables and their purpose is con-
tained within the Sybase DBMS manuals.

Stored Procedures

While RT Kernel controls the overall flow of data between the user tables,
the programs which perform the actual input, retrieval, or updating of data
within the user tables are called stored procedures. These procedures are
essentially Sybase subroutines called by RT Kernel or other software modules,
such as the DSS, when it inputs data into the Dredging_Data table in the
SHIP database. When invoked by name, Sybase fetches the appropriate stored
procedure and executes the operations therein independent from and without
intervention by the calling program. Input parameters are passed to the stored
procedure when it is invoked, and output parameters are returned by the stored
procedure when it completes its processing. The procedures are stored within
the Sybase DBMS. These procedures, while written specific to the Silent
Inspector system, were developed under the same protocols as standard Sybase
stored procedures.

‘The stored procedures perform one of the following three operations:

35

Chapter 4 System Database

36

INSERT:
SELECT:
UPDATE:

Input data into a user table in the database.
Retrieve data from a user table in the database.
Update data within a user table in the database.

There are 21 stored procedures within the SHIP database. The name and
purpose of each procedure are listed below:

Procedure Name

INSERT_DOWNTIME_DATA

‘INSERT_DREDGING_DATA

INSERT_LOAD_DATA
INSERT_LOAD_DISPOSAL_AREA

INSERT_LOAD_STATION
INSERT_PROJECT_DREDGE
INSERT_PROJECT_SUMMARY_DATA
INSERT_STATE
SELECT_DISPOSAL_AREA_DISTINCT

SELECT_DOWNTIME_DISTINCT

SELECT_LATEST_DREDGING_DATA

SELECT_LOAD_DISTINCT

SELECT_MIN_MAX_

SELECT PROCESSED_DREDGING_DATA

SELECT_PROJECT_DISTINCT

SELECT_PROJ_SUMMARY_DISTINCT

SELECT_STATION_DISTINCT

SELECT_UMPROC_DREDGING_DATA

UPDATE_DOWNTIME

UPDATE_DREDGING_DATA

UPDATE_PROJECT_SUMMARY

Procedure Purpose

Insert a downtime event into the Downtime table
Insert data from the DSS into the Dredging Data table
Insert summary data for a load into the Load table
insert a dump event for a disposal area into thé Load
Disposal Area table

Insert a dredging event for a station (site) into the
Load Station table

Insert information on a dredge assigned to a project
into the Project Dredge table

Insert project summary data into the Project Summary
Data table

Insert information related to a change in the dredge
state (activity) into the State table

Retrieve a unique disposal area name from the Dis-
posal Area Table based on its boundary data
Retrieve a unique downtime event having a user speci-
fied Contract ID, Project name, Dredge name, and
Start_Date_Time from the Downtime table

Retrieve the data record from the Dredging Data table
having the latest date/time value

Retrieve the data from the Load table for a user-
specified Contract ID, Project name, Dredge name,
and Load Number '

Retrieve the minimum and maximum date/time values
that exist in data records in the Dredging Data table
Retrieve the latest processed (been assigned a dredge
state by the RT Kernel program) data record in the
Dredging Data table

Retrieve a unique project data record having a user-
specified Contract ID, and Project name from the Pro-
ject table, and retrieve the District name from the
District table

Retrieve a unique project summary data record from
the Project Summary table having a user-specified
Contract ID, Project name, and Dredge name
Retrieve a unique station (dredging area) name from
the Station table based on its boundary data

Retrieve the earliest unprocessed (not been assigned
a dredge state by the RT Kernel program) data record
in the Dredging Data table

Update a downtime event in the Downtime table with a
user input cause and comment

Update a dredging data record in the Dredging Data
table with a load number, dredge state, and TDM
value

Update a project summary data record in the Project
Summary table

Stored procedures are procedures created specifically for use by Sybase.
The stored procedures are created and changed using a text editor, and entered
into the Sybase DBMS using isql. They are defined to Sybase by name and

Chapter 4 System Database

may have a parameter list, just like other procedures in other languages. They
are invoked (called) by name from within RT Kernel or the other Ada code
modules within the system, and parameters are then supplied to match the
parameter list of the stored procedure.

The specific code associated with each of these stored procedures is pro-
vided in Appendix A. Each data element within the data tables that is input,
retrieved, or updated by these stored procedures is listed within this code.

RT Kernel

The system’s central program within the SHIP component, which processes
newly arriving data and controls the overall flow of data, is called RT Kernel.
RT Kernel starts running when the user starts the SHIP component of the
Silent Inspector system by clicking on the DOSIS icon. RT Kernel then runs
continuously whether or not the DSS is operating and inserting data into the
SHIP database. RT Kernel has several functions:

a. Looks at each data record inserted by the DSS into the Dredging_Data
table (called unprocessed data) and computes the dredge state (activity)
occurring at that time, the tons dry weight of material collected in the
hopper at that time (TDM), and assigns a load number to the data
record. Once these three values have been attached to the data within
the Dredging Data table, the data are considered processed data.

b. 1If the dredge state is determined to be “Down,” RT Kernel makes an
entry in the DOWNTIME table.

¢. Distributes the processed data to other database tables.
d. Computes and stores data for load and daily reports.

e. Determines when the end of a trip or day has occurred, and initiates
Unix processes (subroutines), which create a trip or daily report.

/. Determines whether or not dredging areas (stations) and disposal areas
related to the current project have been entered into the PRO-
JECT_STATION and PROJECT _DISPOSAL_AREA tables; and if so,
determines whether or not the vessel is dredging or disposing in those
defined areas; and if so, enters that fact into the LOAD_STATION and
LOAD_DISPOSAL_AREA tables.

To perform these functions, RT Kernel calls upon several subroutines.
Those subroutines in tumn utilize the Sybase stored procedures to access or
insert data within the database tables. The steps RT Kernel performs and the
names of the subroutines utilized are summarized below in order of their

Chapter 4 System Database 37

38

performance within RT Kernel. Steps that are indented represent steps which
occur within the called subroutines.

Steps Performed Subroutine Names

Log on to DOSIS database upon SHIP module startup Database.Signon
Initialize data monitoring module from last processed data Initialize_Data_Monitoring
Retrieve latest processed data record Database.Select_Processed _Dredg-
ing_Data
Retrieve sarliest unprocessed data record from database Get Unprocessed Dredging_Data; &
Database. Select_Unprocessed Dredg-

ing_Data
If data are for a different project, initialize project data Initialize_Project_Data
Identify disposal areas assigned to the project Initialize_Disposal_Areas
Identify dredging areas assigned to the project Initialize_Stations
Compute time between new and previous data records Elapsed_Time
Compute the dredge state for the new data record - S|_Computations.Compute_Dredge_State
If data are for a new load (trip), initialize a new load record Initialize_Load

Update Load table for elapsed time in new dredge state Load_State_Time
Update several database tables with new record data Kernel_Database_Transaction

Check for the end of a load New_State
Add load data to existing load no. in Load table Add_Load
Create new load if needed New_Load
Check for a change in the dredge state New_State
Add dredge state change data to State, Load, Add_State_Change
and Dredging_Data tables
Check for start of downtime state and Initialize_Downtime
initialize downtime record
Check for end of downtime state and enter data Add_Downtime
Check for and mark start of dumping state Dumping_Started
Check for dumping in a project disposal area Check_Disposal_Areas
Add data to Load_Disposal_Area table - Add_Dumping_Entry
Check for dredging in project dredging area (station) Check_Stations
Add data to Load_Station table Add_Dredging_Entry
If dumping state is just completed, and to cut started, SI_Computations.
compute sailing empty displacement Dredge_Empty_Displacement
If not sailing empty, compute TDM SI_Computations.Tonnage_Dry_Measure
Update Dredging_Data table with state & load no. Database.Update_Dredging_Data
Complete the database transaction Database.Commit_Transaction
Print reports as necessary Print_Manager
Print a load (trip) report Print_Trip_Report
Print a daily report Print_Daily_Report
Save current processed data record values for Save_Values

use in processing next unprocessed record

Chapter 4 System Database

5 System Computations

The DOSIS system performs calculations within both the DSS and SHIP
components. No computations are performed within the SHORE component at
the present time, as all necessary values have been computed and stored in the
DOSIS database prior to its archiving and transfer to a SHORE unit.

DSS Component Calculations

Calculations within the DSS component are not necessarily identical
between DSS units. This is because each DSS is configured to receive and
process a specific suite of sensor data being provided by a particular dredge.
In all cases, the output of the DSS to the SHIP database is identical in its con-
tent, format, and method of interaction with the SHIP component. Therefore,
while the DSS calculations may vary, the calculated values and their units will
remain the same between DSS units. The training and reference DSS performs
the following calculations:

Calculation Name Units Purpose

Average hopper ullage feet Calculate the average of the four ullage
sensor values

Average hopper level forward feet Determine the leve! of the water in the
hopper at the forward end

Average hopper level aft feet Determine the level of the water in the
hopper at the aft end

Hopper volume yds3 Determine the volume of water and mate-

rial within the hopper based upon the
fore and aft water levels

Port/Stbd pump on/off on/off Determine if the port and starboard
pumps are on or off

Port/Stbd material recovery yes/no Determine if material is being recovered
through the port and starboard drag arms

Status of parameter values Ok, Lo, Hi, No Determine if the received or computed
data values are within or beyond accept-
able limits, as defined in a data accept-
able range table, or if the data are
missing

Chapter 5 System Computations

39

Each of the DSS calculations are provided below. The data parameters
used and computed in each calculation, their abbreviation (if any) used in the
equations, their units, and the source of the values used for the parameters are
presented first. The source of a parameter can either be a SHIP database table,
another computation, or a fixed value based on a particular dredge. The exact
names of the parameters as they appear within the database tables or within the
equations are shown. The detailed equations are then listed.

Average hopper ullage
This computation is a straight average of the four hopper ullage readings.

Parameters Used and Sources:

Parameter Units Data Source
Ullage meter No. 1 feet DSS

Ullage meter No. 2 feet Dss

Ullage meter No. 3 feet DSS

Ullage meter No. 4 feot Dss
Average_Ullage feet Computed

Equations:

Average_Ullage = (Ullage 1 + Uilage 2 + Ullage 3 + Ullage 4) / 4

Average hopper level forward

This computation converts the forward ullage readings into an average
water level in the hopper at its forward end.

Parameters Used and Sources:

Parameter Units Data Source

Ullage meter No. 1 feet DsS

Ullage meter No. 2 feet DSS

Average_Ullage_Forward feet Computed

Hopper_Bottom_To_Sensors feet Fixed; specific to Essayons
Equations:

Average_Ullage_Forward = (Ullage 1 + Ullage 2) / 2
Average_Level_Forward = Hopper_Bottom_To_Sensors - Average_Ullage_Forward

Note: This calculation is currently not performed in the training and ref-
erence DSS. Instead, this value is set to a default value with a status value of
“missing.”

40 Chapter 5 System Computations

Average hopper level aft

This computation converts the aft ullage readings into an average water

level in the hopper at its aft end.

Parameters Used and Sources:

Parameter Units

Ullage meter No. 3 feet

Ullage meter No. 4 feet

Average_Ullage_Aft feet

Hopper_Bottom_To_Sensors feet
Equations:

Average_Ullage_Aft = (Ullage 3 + Ullage 4) / 2

Data Source

DSS

DSS

Computed

Fixed; specific to Essayons

Average_Level_Aft = Hopper_Bottom_To_Sensors - Average_Ullage_Aft

Note: This calculation is currently not performed in the training and ref-
erence DSS. Instead, it is set to a default value and a status of “missing.”

Hopper volume

The Essayons hydrostatic curves were used to derive the equations used to
compute the hopper volume. The average ullage reading was used to compute

the hopper volume as shown below.

Parameters Used and Sources:

Parameter Units

Average_Ullage feet

Hopper_Volume yds®

Constants none
Equations:

If Average_Ullage <= 11, then

Data Source

Computed
Computed
Fixed; specific to Essayons

Hopper_Volume = 6852.57 - (150.74067 * Average_Ullage)

otherwise,

If Average_Ullage > 11 <= 31, then

Hopper_Volume = 7534.1 - (209.45 * Average_Ullage)

otherwise,

If Average_Ullage > 31, then

Hopper_Volume = -75179.0 + (9346.8 * Average_Ullage) - (411.27 * Aver-
age_UIIagez) +(7.7651 * Average_UIIageS) - (0.053733 * Average_UIlage4)

The constants listed in these equations are derived from the volume curves/

equations for the Essayons hopper.

Chapter 5 System Computations

41

42

Port/starboard pumps on/off

Port and starboard pump on/off determinations are computed based upon

the draghead velocity measurements.

Parameters Used and Sources:

Parameter Units

Port_Draghead_Velocity feet/sec

Stbd_Draghead_Velocity feet/sec

Pump_On_Port true/false

Pump_On_Stbd true/false
Equations:

Data Source

DSS
DSs
Computed
Computed

If Port_Draghead_Velocity > 10.0, then Pump_On_Port = true ,then,
If Port_Draghead_Velocity < 10.0, then Pump_On_Port = false

otherwise

If Stbd_Draghead_Velocity > 10.0, then Pump_On_Stbd = true, then,
If Stbd_Draghead_Velocity < 10.0, then Pump_On_Stbd = false

Port/starboard material recovery true/false

Port and starboard material recovery determinations are computed based

upon draghead density measurements.

Parameters Used and Sources:

Parameter Units

Port_Draghead_Density a/l

Stbd_Draghead_Density g/l

Pump_Material_Port true/false

Pump_Material_Stbd true/false
Equations:

Data Source

DSS
DSS
Computed
Computed

If Port_Draghead_Density > 1.05, then Pump_Material_Port = true, then,
If Port_Draghead_Density < 1.05, then Pump_Material_Port = false

otherwise

If Stbd_Draghead_Density > 1.05, then Pump_Material_Stbd = true, then,
If Stbd_Draghead_Density < 1.05, then Pump_Material_Stbd = false

Pumpout pump on/off

Hopper pumpout pump on/off determinations are computed based upon
velocity measurements in the discharge pipe. This parameter is not currently

Chapter 5 System Computations

DSS, but is intended as a required parameter.

included in the parameters supplied Essayons data logging computer to the
[Parameters Used and Sources:

l

|

|

Parameter Units Data Source

Port_Discharge_Pipe_Velocity feet/sec DSS
Stbd_Discharge_Pipe_Velocity ~ feet/sec DSS

Pumpout_Pump_On_Port true/false Computed
Pumpout_Pump_On_Stbd true/false Computed
Equations:

If Port_Discharge_Pipe_Velocity > 10.0, then Pumpout_Pump_On_Port = true ,then,
If Port_Discharge_Pipe_Velocity < 10.0, then Pumpout_Pump_On_Port = false

otherwise

If Stbd_Discharge_Pipe_Velocity > 10.0, then Pumpout_Pump_On_Stbd = true,
then,

If Stbd_Discharge_Pipe_Velocity < 10.0, then Pumpout_Pump_On_Stbd = false

Data status

The status values that can be assigned to each sensor or computed data

values are:
Status Abbr. Meaning
ACCEPTABLE OK sensor measurement is within acceptable limits
OUT_OF_RANGE_LOW LO sensor measurement is out-of-range low
OUT_OF_RANGE_HIGH HI sensor measurement is out-of-range high
MISSING NO sensor measurement is missing

Minimum and maximum acceptable values for each type of data are con-
tained within a file, named RANGE.DAT, that is loaded into the DSS. The
values presently set for use with the Essayons are shown in Chapter 3. To
determine the status of each data value, the DSS compares the values in each
data record it receives to the minimum and maximum values in the
RANGE.DAT file. An ADA code subroutine performs this comparison.

SHIP Component Calculations

Calculations within all SHIP components are identical, as the contents of all
SHIP databases are identical. Only when data values required for the calcula-
tions are missing or out of the acceptable range will the calculations not be
performed identically. In most cases the necessary calculations can always be
made; however, in cases where a calculation is not possible, the value being
calculated is set to a default value, which is normally 0.

The SHIP component performs the following calculations:

Chapter 5 System Computations 43

44

Calculation Name Units Purpose

Load number integer Calculates and assigns a consecutive load num-
ber to each load performed on a dredging project,
as defined by the project name and contract ID.

Tons dry measure long tons Calculates the weight of sediment in the hopper
on a dry weight basis assuming an individual
sediment particle density of 2,650 g/cma.

Dredge state none Calculates the activity the dredge is performing at
the time of each measurement record (10-sec
intervals).

Dredging area none Calculates and assigns the name of a dredging

location to each load by comparing the dredge’s
position during dredging of the load with pre-
entered dredging area coordinates.

Disposal area none Calculates and assigns the name of a disposal
area to each load by comparing the dredge’s
position during dumping of the load with pre-
entered disposal area coordinates.

Time summations hh:mm:ss Calculates the amount of time the dredge per-
forms various activities during a load, a day, and
a job, or other time period defined by the user.

Details of each of the SHIP calculations are provided below. Again, where
practical, a graphical overview of the data parameters used and computed from
each calculation is presented first. The exact names of the parameters as they
appear within the database tables or within the equations are shown. The
detailed equations are then listed, followed by a table which lists each param-
eter, its abbreviation (if any) used in the equations, its units, and the source of
the values used for the parameters.

Load number

A new load number is computed after each dumping phase has been com-
pleted. Load numbers are computed by incrementing the previous load num-
ber by 1. The load number is the highest load number currently in the
DREDGING_DATA table for the current contract ID and dredge name. If no
data exist in the DREDGING_DATA table for the contract ID and dredge
name, then the initial load number is set to 1.
Tons dry measure

The TDM value is computed in two steps, as follows:

a. Determine the displacement of the dredge when the hopper is empty.

b. Determine the tonnage dry measure of the material in the hopper.

Chapter 5 System Computations

The detailed computations within each of these steps proceed as follows:
Step 1: Determine the displacement of the dredge when empty.

Parameters Used and Source:

Abbr. Parameter Units Data Source
HV Hopper_Volume yd3 Dredging_Data table
W, Empty_Displacement long tons Computed
W, Total_Displacement long tons Computed
D., Center_Buoyancy_Draft feet Computed
D; Vessel_Draft_Forward feet Dredging_Data table
| D, Vessel_Draft Aft feet Dredging_Data table
‘ B; Buoyancy_Forward (60.417) feet Specific to Essayons
B, Buoyancy_Aft (121.917) fest Specific to Essayons
SC Slope_Closed (591.667) none Spacific to Essayons
CC constant closed (-2383.333) none Specific to Essayons
md,, Water_Density (1025.0) g Fixed
Conversion_Factor (1328.8) none Fixed

Values for constants are shown in parentheses after the parameter name.
Constants specific to the Essayons were obtained from the vessel’s specifica-
tions. The factor for converting long tons per cubic yard into grams per liter
is 1328.8.

Equations:

if HV <= 0.0, then
W, = 8300.0

eise (otherwise):
= Df + (Da - Df) * (Bf/Ba)
W, = SC*D, +CC
o = W,-(HV*md,/Cy
Step 2: Determine the tonnage dry measurement of material within the
hopper.

Parameters Used and Source:

Abbr. Parameter Units Data Source

HV Hopper_Volume yd® Dredging_Data table
W, Empty_Displacement long tons Computed

W, Total Displacement long tons Computed

D, Center_Buoyancy_Draft feet Computed

D; Vessel Draft Forward feet Dredging_Data table
D, Vessel_Draft Aft feet Dredging_Data table
B; Buoyancy Forward (60.417) feet Specific to Essayons
B, Buoyancy Aft (121.917) feet Spacific to Essayons
SC Slope_Closed (591.667) none Specific to Essayons
CC Constant closed (-2383.333) none Spaecific to Essayons
md,, Water_Density (1025.0) gl Fixed

md,, Load_Density gh Computed

md . Dry_Material_Density (2650.0) g/ Fixed

C; Conversion_Factor (1328.8) none Fixed

TDM Tonnage_Dry_Measure longtons Computed

Chapter 5 System Computations

45

Equations:

if HV <= 0.0, then
TDM = 0.0

otherwise:

ch = Df + (Da - Df) * (Bf/ Ba)

W, =SC* D, +CC

md, = (W, - W,) / HV) * 1328.8

TOM = (md,, - md,,) / (md,, - md,)) * md,, * HV/C

The constant values listed above are for the Essayons, and are directly
coded into the TDM equations utilized within RT Kernel. The Setup module
will eventually permit the user to enter these values into the Dredge table. RT
Kernel will then look these constant values up within the dredge table accord-
ing to the dredge in use.

Dredge state

For each data record arriving from the DSS, the system calculates the ongo-
ing activity at the time of the measurements. These activities are called dredge
states. The system currently assigns one of seven dredging states to each data
record. The dredge states are:

a. Sailing empty.

b. Dredging material.

¢. Pumping (with no material recovery).

d. Tuming.

e. Sailing full.

/- Dumping.

g. Downtime.

Calculating the dredge state is performed in eight steps. These steps are as
follows:

a. Compute the rate of change of the vessel heading.
b. Determine the maximum draft for detecting turning.

c. Compute the depth above which the dragheads will be considered up
(minimum dredging depth), and no dredging is occurring.

d. Check if either pump is pumping material.

Chapter 5 System Computations

e. Check if both dragheads are raised above the minimum dredging depth.
/. Determine whether or not the vessel is turning.
g. Determine which dredge states are possiblé.

h. Determine which dredge state is occurring based on the computed pos-
sible dredge states (results of item g).

Steps a-f compute information needed to determine which dredge states
may exist (Step g). The final selection of a dredge state from the possible
dredge states is performed in Step h. The detailed computations within each
of the eight steps are shown below.

In these computations, certain values in the equations, such as the Mini-
mum_Sailing_Speed, are fixed within the system. These values were entered
during system development and cannot be changed except by a systems engi-
neer. The forward/aft empty and loaded drafts are for the Essayons; the
remaining values are appropriate for use on any dredge. These parameters,
and their current values, are listed below:

Parameter Value Units
Forward_Draft_Loaded 24.0 fest
Forward_Draft_Empty 17.0 feet
Aft_Draft_Loaded 26.0 feet
Aft_Draft Empty 245 feet
Minimum_Turning_Rate .05 degrees
Minimum_Sailing_Speed 4.0 knots
Minimum_Dredging_Speed 0.1 knots
Minimum_Dumping_Speed 0.1 knots

Step a: Determine a rate of change of the gyro heading.

Parameters Used and Sources:

Parameter Units Data Source

Vessel_Heading degrees Dredging_Data table

Previous_Course degrees Dredging_Data table

Gyro_Rate degrees/sec Computed
Equations:

If Delta_Time > 0.0, then
Gyro_Rate = [(Vessel_Heading - Previous Course) / Delta_Time)]

Step b: Determine the maximum vessel draft of fore and aft readings.

Parameters Used and Sources:

Parameter Units Data Source
Vessel_Draft_Forward feet Dredging_Data table
Vessel Draft_Aft feet Dredging_Data table

47

Chapter 5 System Computations

Maximum_Draft feet Computed
Equations:

If Vessel_Draft_Forward > Vessel_Draft_Aft, then
Maximum_Draft = Dredging_Draft_Forward,

otherwise:

Maximum_Draft = Dredging_Draft_Aft
Step ¢: Determine the minimum dredging depth.

Parameters Used and Sources:

Parameter Units Data Source
Vessel_Draft_Forward feet Dredging_Data table
Water_Depth feet Dredging_Data table
Minimum_Dredging_Depth feet Computed

Equations:
Minimum_Dredging_Depth = 0.75 * (Vessel_Draft_Forward + Water_Depth)

Step d: Determine if material is being recovered.

Parameters Used and Sources: F
Parameter Units Data Source
Pump_On_Port Yes/No Dredging_Data table
Pump_On_Stbd Yes/No Dredging_Data table
Pump_Material_Port Yes/No Dredging_Data table
Pump_Material_Stbd Yes/No Dredging_Data table
Pumping_Material Yes/No Computed
Equations:

Pumping_Material is true if:
Pump_On_Port = True, and
Pump_Material_Port = True, or if
Pump_On_Stbd = True, and
Pump_Material_Stbd = True

Step e: Determine if both dragheads are up.

Parameters Used and Sources:

Parameter Units Data Source

Port_Draghead Depth Status Ok, Lo, Hi, No Dredging_Status table
Stbd_Draghead_Depth Status Ok, Lo, Hi, No Dredging_Status table

Water_Depth Status Ok, Lo, Hi, No Dredging_Status table
Draghead_Depth_Port feet Dredging_Data table
Draghead_Depth_Stbd feet Dredging_Data table
Maximum_Draft feet Computed

48 Chapter 5 System Computations

Minimum_Dredging_Depth feet Fixed
Dragheads_Up Yes/No Computed

Equations:

Dragheads_Up is true if:
Port_Draghead_Depth Status = Acceptable, and
Draghead Depth_Port <= Maximum_Draft, and
Stbd_Draghead_Depth Status = Acceptable, and
Draghead_Depth_Sthd <= Maximum_Draft,

otherwise:

Water_Depth Status = Acceptable, and
Port_Draghead_Depth Status = Acceptable, and
Draghead_Depth_Port <= Minimum_Dredging_Depth, and

Stbd_Draghead_Depth Status = Acceptable, and
Draghead_Depth_Stbd <= Minimum_Dredging_Depth

Step f: Determine if vessel is turning.

Parameters Used and Sources:

Parameter Units Data Source

Gyro_Rate degrees Computed

Minimum_Turning_Rate degrees Fixed

Turning_Vessel Yes/No Computed
Equations:

Turning_Vessel is true if:
Gyro_Rate > Minimum_Turning_Rate

Step g: Determine the possible dredge state(s).
Determination of possible dredge states is summarized in the Dredge Status
Computation Logic Table (Table 2). Each dredge state has a unique set of

conditions. If the computations cannot determine a unique dredge state, the
system attaches a “Downtime” dredge state designation to the data record.

Parameters Used and Sources:

Parameter Units Data Source
Pumping_Material true/false Computed
Pump_On_Port true/false Dredging_Data table
Pump_On_Stbd true/false Dredging_Data table
Ground_Speed_Status Ok, Lo, Hi, No Dredging_Status table
Vessel_Speed knots Dredging_Data table
Minimum_Dredging_Speed (0.1) knots Fixed

Course_Status OK, Lo, Hi, No Dredging_Status table
Gyro_Rate degrees Computed
Minimum_Tuming_Rate (.05) degrees/sec Fixed
Port_Draghead_Depth_Status Ok, Lo, Hi, No Dredging_Status table
Stbd_Draghead_Depth_Status Ok, Lo, Hi, No Dredging_Status table
Draghead_Depth_Port feet Dredging_Data table
Draghead_Depth_Sthd feet Dredging_Data table

.

49

Chapter 5 System Computations

‘Jouy |°0 :peeds Buidwnp wnwiuiy
‘Jouy }'0 :peeds Buibpeip wnwiuy
‘sjowy 0’y -peeds Bunres wnwiuipy
‘08s/Bep g0’ :ejes Buwiny wnwiuy
‘(suoAess3 Joy) Y S'¥2 = Ye ‘Y 0'L} = premelo} :Adwe yeip diys
“(suofess3 10}) 'Y 0'92 = Ye 'Y 0'L} = pJemelo} pepeo| yelp diys
‘senjeA yelp Ye Jo pJemelo} ey jo Jejeeidb :yelp diys wnuixepn
“(IIny |8sseA Jepun yidep Jelem + piemelo) yeJp [essen) .5/ 0> Widep peeybesp ueym dn speeybeiq
'SSQ Ui peindwod ueym feuelews Huidwng
"SSQ Ul peindwos :ueym uo sdwng

:sejoN
swpumoq
Buipeoyo
en} SeA SBA Buidwng
SeA oN SeA SeA esjeq esjeq4 | |inq Buyres
es|eq SeA SeA SOA SeA esjeq Buping
(1e3EM)
SeA SOA esjeq eni) Bfuidwng
[eueley
SeA e} enl} Buibpesq
Adwgy
SeA oN SeA SeA osjed esje4 Buyes
uvedo peeds peeds peeds peeds | ejgs win} | @181 UIN pepeoj| Adwe yeip dn feLoleW uQ e)els
sioop | Buidwnp | BuiBpesp Buijtes Buyjies U =< ww > yeip < yeip > diys | speey | Buidwing | (s)dwing eBpeiq
JeddoH uw < uw < Ul =< ww > el ojel yeig yesg | -xew +> | -Beiqg
peods peeds peeds peeds olhx 04An) [essop |osseA speey
[oss0A [9SSOA 1essep [o888A -Beiq

ajqel 21601 uopeindwo) snieis abpaiqg

¢ 9d|qel

Chapter 5 System Computations

50

Maximum_Draft feet Computed

Minimum_Sailing_Speed (4.0) knots Fixed
Minimum_Dumping_Speed (0.1) knots Fixed
Dragheads_Up true/false Computed

l Hopper_Door_Open true/false Dredging_Data table
State none Computed
Turning_Vessel true/false Computed
Forward_Draft_Status Ok, Lo, Hi, No Dredging_Status table
Aft_Draft_Status Ok, Lo, Hi, No Dredging_Status table
Vessel_Draft_Forward feet Dredging_Data table

| Vessel_Draft_Aft) feet Dredging_Data table

| Forward_Draft_Loaded (24.0) feet Fixed; specific to Essayons
Aft_Draft_Loaded (26.0) feet Fixed; specific to Essayons
Forward_Draft_Empty (17.0) feet Fixed; specific to Essayons
Aft_Draft_Empty (24.5) feet Fixed; specific to Essayons

Equations:

Dredging_Material_State is true if:
Pumping_Material (results of Step 4) is True, and
Hopper_Door_Open is False

Pumping_State (no material recovery) is true if:
Pumping_Material (results of Step 4) is False, and
Pump_On_Port is True, or

Pump_On_Stbd is True

Pump_On_Stbd is False, and
Ground_Speed_Status = Acceptable, or
Vessel_Speed > Minimum_Dredging_Speed, and
Course_Status = Acceptable, or

Gyro_Rate < Minimum_Turning_Rate

Turning_State is true if:
Port_Draghead_Depth Status = Acceptable, and
Draghead_Depth_Port <= Maximum_Draft, and
Stbd_Draghead_Depth Status = Acceptable, and
Draghead_Depth_Stbd <= Maximum_Draft, and
Ground_Speed_Status = Acceptable, or
Vessel_Speed < Minimum_Sailing_Speed, and
Pump_Material_Port is False, and
Pump_Material_Stbd is False, and
Dragheads_Up, and

Pumping_Material is False, and
Hopper_Door_Open is False, and
Course_Status = Acceptable, or

Gyro_Rate >= Minimum_Turning_Rate, and
State = Pumping, Turning, or Down

Dumping_State is true if:

Hopper_Door_Open is True, and
Ground_Speed_Status = Acceptable, or
Vessel_Speed > Minimum_Dumping_Speed, and
Vessel_Speed < Minimum_Sailing_Speed, and
State = To-Dump, Dumping, or Down

Sailing_Full_State is true if:

Pump_On_Port is False, and

Pump_On_Stbd is False, and

Pumping_Material is False, and

Turning_Vessel is False, and

Dragheads_Up is True, and

Forward_Draft Status = Acceptable, and
Vessel_Draft_Forward > Forward_Draft_Loaded, and

51

Chapter 5 System Computations

52

Aft_Draft_Status = Acceptable, and
Vessel_Draft_Aft > Aft_Draft_Loaded, and
Ground_Speed_Status = Acceptable, or
Vessel_Speed >= Minimum_Sailing_Speed, and
State = Pumping, Turning, To_Dump, or Down

Sailing_Empty_State is true if:
Pump_On_Port is False, and

Pump_On_Stbd is False, and

Pumping_Material is False, and

Turning_Vessel is False, and

Dragheads_Up is True, and
Forward_Draft_Status = Acceptable, and
Vessel_Draft_Forward < Forward_Draft_Empty, and
Aft_Draft_Status = Acceptable, and
Vessel_Draft_Aft < Aft_Draft Empty, and
Ground_Speed_Status = Acceptable, or
Vessel_Speed >= Minimum_Sailing_Speed, and
State = Dumping, To_Cut, or Down

Step h: Determine, rename, dredge state from possible states.

The selection of the actual dredge state to be assigned to a data record from
the possible dredge state(s) computed under step g is performed using the
following priority: dumping, pumping (material or water), to-cut, to-dump,
turning, down. If dumping is computed within step g as a possible dredge
state, then dumping is selected as the dredge state as it is given the highest
selection priority. If dumping is not a possible dredge state, then the next
dredge state in the priority list which is also included in the possible dredge
states is assigned to the data record.

Dredging area (station)

A dredging area can be made up of 1 to 10 rectangular areas. For each
dredging record where the dredge state is PUMPING, a test is made to deter-
mine if the current vessel position is within one of these rectangular areas. If
s0, a record is added to the LOAD-STATION table indicating that the dredge
was dredging in that area during the current load. If the dredge is not pump-
ing in an assigned dredging area, that too is recorded in the LOAD_STATION
table.

Disposal area

A disposal area can be made up of 1 to 10 rectangular areas. For each
dredging record where the dredge state is dumping, a test is made to determine
if the current vessel position is within one of these rectangular areas. If so, a
record is added to the LOAD_DISPOSAL_AREA table indicating that the
dredge was dumping in that dredging area during the current load. If the
dredge is not dumping in an assigned dredging area, that too is recorded in the
LOAD_DISPOSAL_AREA table.

Chapter 5 System Computations

Time summations for reports

Trip, daily, and job-to-date reports contain summations of the time certain
activities have occurred, such as the amount of time each dredge state has
occurred within the reporting time period. These time summations are per-
formed by the subroutines, initiated by RT Kernel, which generate the reports.
The time summations are a straight summation based on the times attached to
each data record in the DREDGING_DATA table for a trip (load), day, or job-
to-date.

53

Chapter 5 System Computations

54

6 System Interfaces

The Silent Inspector system contains four main interfaces between the sys-
tems components, and between the system and other types of hardware plat-
forms and software. These interfaces and their purpose are:

Interface Purpose

Sensors to DSS Transfer of sensor data to the DSS component

DSS to SHIP Transfer of data from DSS to SHIP database

SHIP to SHORE Transfer of data from SHIP to SHORE components

Outside Access Access to the SHIP or SHORE databases using other types
of software

Overviews of each interface, and its specifications and format requirements,
are provided below.

Sensors-to-DSS Interface

As each hopper dredge has a different suite of electronic sensors, the inter-
face between the sensors, or a sensor data collection computer, and the DSS
component will vary from dredge to dredge. It is anticipated that no two
sensor-t0-DSS interfaces may be exactly alike. What is important is that each
DSS must take these varied inputs and create a standard, identical format data
record for insertion into the SHIP database.

When the data are received by the DSS via RS232, the data should have
already been converted into engineering units and data calibrations applied, so
the data are considered final, true values. If other than RS232 data inputs are
to be received, such as sensor voltages, the conversions of the sensor outputs
to useable units and calibrated values may be programmed into the DSS.

The training and reference DSS was designed specifically for the Corps of
Engineers hopper dredge Essayons, which already has a data logging computer
aboard. The DSS was therefore designed to accept sensor data in-RS232 for-
mat. So as to allow development and testing of the DSS and SHIP compo-
nents, the DSS also accepts sensor data from pre-recorded data files of
Essayons data. The sensor-to-DSS interface format was structured to match

Chapter 6 System Interfaces

the format output by the Essayon’s data logging computer. Each data record is
127 characters followed by a carriage return line-feed <crif>. The specific

sensor data in each incoming record, and its format, character length, and posi-
tion within each 127-character record, are shown below.

Sensor Data Units Data Character Character
(Parameter) Format Length Position
Flag none ASCI| string 6 1-6
Date yymmdd (local) ASCII string 6 7-12
Time seconds (local) Floating point 5 13-17
RMS Error feet Floating point 4 18-21

X location feet Floating point 7 22-28

Y location feet Floating point 7 29-35
Forward draft feet Floating point = 6 36-41
Aft draft feet Floating point 6 42-47
Tide elevation fest Floating point 5 48-52
Port drag arm velocity feet/sec Floating point 4 53-56
Port drag arm density gramsfliter Floating point 4 57-60
Starboard drag arm velocity feet/sec Floating point 4 61-64
Starboard drag arm density grams/liter Floating point 4 65-68
Port gimbal depth feet Floating point 4 69-72
Starboard gimbal depth feet Floating point 4 73-76
Port draghead depth feet Floating point 4 77-80
Starboard draghead depth feet Floating point 4 81-84
Heading degrees true Floating point 3 85-87
Course degrees true Floating point 3 88-90
Water depth (below hull) feet Floating point 4 91-94
Speed (over ground) knots Floating point 4 95-98
Ship weight-hopper open long tons Floating point 6 99-104
Ship weight-hopper closed long tons Floating point 6 105-110
Uliage - meter no. 1 feet Floating point 4 111-114
Ullage - meter no. 2 feet Floating point 4 115-118
Ullage - meter no. 3 feet Floating point 4 119-122
Uliage - meter no. 4 feet Floating point 4 123-126
Hopper door open true/false ASCII string 1 127

Definitions of the data to be provided for each parameter are shown below.
Specific value ranges or limitations specific to the Essayons data record are
also listed. Note that for all parameters having a floating point data format,
the position of the decimal place varies and is contained within the characters
sent for each parameter. ’

Sensor Data Definition

(Parameter)

Date Date in local time of the sensor measurements, formatted yymmdd.

Time Seconds past midnight, from 0.000 to 86400, local time.

Root mean square RMS error of ship’s position based on the X and Y range values used

(RMS) Error to calculate the position. Valid numbers range from 0.00 to 32.9,
which is the maximum value tolerated in the Essayon’s positioning
system.

X location X (easting) Lambert position of the dredge.

Y location Y (northing) Lambert position of the dredge.

Chapter 6 System Interfaces

55

56

Forward and aft draft Draft of vessel below waterline at the forward and aft sensor
locations. On the Essayons, forward draft range = 10 to
30 ft, aft draft range = 20 to 30 ft.

Tide elevation Tide height relative to mean lower low water.

Port & Stbd drag arm velocity Velocity of water moving through the drag arms.

Port & Stbd drag arm density Spbciﬁc gravity of water/material mixture in the drag arms.
Valid values are 1.0 to 2.0; values < 1.0 indicate no water in
the drag arm.

Port & Stbd gimbal depth Depth below water surface of the drag arm gimbals. Valid

range for Essayons is 0.00 to 50.0.

Port & Stbd draghead depth Depth below water surface of the low fixed point of each
draghead. This value includes a correction for the draft and
trim of the vessel, and is not depth below the keel.

Heading Heading in degrees of the vessel as taken from the Gyro-
compass. Values are from 0.00 to 359.

Course Vessel course in degrees made good as computed from the
vessel's navigation system data over 10-sec intervals.

Water depth Depth below the keel at the location of the sensor. This
sensor is not in place on the Essayons, and therefore no
data are provided for this parameter.

Speed Vessel speed over the ground as computed from the ves-
sel's navigation system data over 10-sec intervals.

Ship weight Waeight of the vessel with the doors open and closed. Not
currently included in the data record.

Ullage ‘ Height of water in the hopper. This is computed as the
distance between the water surface to the Uliage sensor,
subtracted from the distance between the bottom of the
hopper to the Ullage sensor. The Essayons has four Ullage
sensors located in each corner of the hopper. A value for
each sensor is included in the data record.

Hopper doors open Status of the hopper doors as either open (true), all doors
all the way closed (false), or undetermined (unknown). Any
single hopper door open requires a door open status.

The training and reference DSS accepts data records as fast as the Essayons
data logging computer sends such records. At present, data records are sent by
the Essayons computer and received by the DSS every 10 sec. The required
spacing for the receipt of sensor data by all DSS components is to be no more
than 10-sec intervals.

DSS-to-SHIP Interface

After receiving input of a sensor data record, the DSS attaches three opera-
tor input and several DSS computed parameters to the data record and stores
the complete outgoing record in a database format suitable for transfer to the

Chapter 6 System Interfaces

SHIP database. The additional parameters attached to each data record, and

their source, are:

Parameter

Contract ID
Project name
Dredge name
Date_Time

Average hopper level forward

Average hopper level aft
Average hopper level
Hopper volume

Port pump on

Starboard pump on

Port material recovery
Starboard material recovery
Pump out on

Status value for each parameter ok, lo, hi, no ASCII string

Units Data Format Source
None ASCII string Operator input to DSS
None ASCII string Operator input to DSS
None ASCI string Operator input to DSS
local Sybase datetime Converted by DSS into
Sybase datetime format from
the date and time inputs
feot Floating point Computed by DSS
feet Floating point Computed by DSS
feet Floating point Computed by DSS
yards® Floating point Computed by DSS
true/false ASCII string Computed by DSS
true/false ASCII string Computed by DSS
true/false ASCII string Computed by DSS
true/false ASCII string Computed by DSS
true/false ASCI! string Computed by DSS

Computed by DSS

The definitions of the data for the parameters input by the operator or com-
puted by the DSS are shown below. See Chapter 5 for details of specific

computations.

Parameter

Contract ID

Project name

Dredge name

Date_Time

Avg. hopper level forward

Avg. hopper level aft

Avg. hopper level

Hopper volume

Port pump on

Starboard pump on

Chapter 6 System Interfaces

Definition

The unique contract number or identifier under which the dredging
data were collected.

The name of the project under which the dredging data were
collected.

The name of the dredge on which the dredging data were collected.

The date and time, in a Sybase Datetime format, at which the mea-
surements in this record were taken. Sybase accepts the date and
time in several different formats (e.g., 940930, 10:45:50.4AM). Refer
to the Sybase Manuals for the acceptable formats.

Average height of water or material in the forward end of the hopper
as computed from the two forward ullage sensors.

Average height of water or material in the aft end of the hopper as
computed from the two aft ullage sensors.

Average height of water or material in the hopper as computed from
the computed forward and aft average hopper levels.

The volume of water and material in the hopper as computed from the
computed average hopper level and equations describing the hopper
volume versus height in the hopper.

The port dredging pump is on (true), off (false), or undetermined
(unknown) as computed from the Port Drag Arm Velocity value.

The starboard dredging pump is on (true), off (false), or undetermined
(unknown) as computed from the Starboard Drag Arm Velocity value.

57

58

Port material recovery The port dredging pump is pumping material (true), not pumping
material (false), or undetermined if it is pumping material (unknown)
as computed from the Port Drag Arm Density value.

Starboard material recovery The starboard dredging pump is pumping material (true), not pumping
material (false), or undetermined if it is pumping material (unknown)
as computed from the Starboard Drag Arm Density value.

‘Pump-out on The pump-out pump (for discharge of the hopper contents through a

pipeline) is on (true), off (false), or undetermined (unknown) as
computed from the Pump-Out Pump Velocity value. Note that this
value is not provided in the Essayons 127-character data record input
into the DSS.

Status of parameter values A data quality flag assigned to all parameters having numerical val-
ues. The validity of each parameter value is determined by compar-
ing the value against a table of acceptable ranges (see Chapter 3),
and given the following data quality flags:

OK - measurement is acceptable

LO - measurement is out-of-range low
HI - measurement is out-of-range high
NO - measurement is missing

While each DSS will have different interface specifications between the
sensors and the DSS, as well as different methods of handling the sensor data
within the DSS to some extent, all DSS components must create identical
completed data records stored within the DSS data structure and transfer these
completed records into the SHIP database in identical fashion. All DSS-to-
SHIP interfaces must therefore meet the following specifications.

Once the DSS has accepted a data record from the sensors, attached the
three operator input parameter values, and computed the values for the addi-
tional parameters listed above, it stores the new completed record in a data
structure within the DSS. Once in this data structure, the data record is now
ready for transfer to the SHIP central database. If the SHIP component is not
on-line, the DSS presently cannot transfer these data into the SHIP central
database. These data can be written directly to a data file, as is the case with
the training and reference DSS, and played back at a later time to insert into
the SHIP central database. The data record within the DSS data structure is
over-written as each new sensor record is obtained and completed by the DSS.

After a completed record has been inserted into the DSS database structure
and the SHIP component is on-line, the DSS will insert the newly completed
record into the DREDGING_DATA table within the SHIP component’s central
database. The DSS must do this by communicating directly with the SHIP
database on a client-server basis. Communications between the DSS and SHIP
database are performed in structured query language (SQL) format using
Sybase Library calls and stored procedures. The SQL operation used to store
the contents of the DSS database structure into the DREDGING_DATA table
is the Insert operation. The Insert operation is presently invoked by calling
the database interface package, written in ADA code, named Database. The
Sybase Insert operation for the DREDGING_DATA table is provided in that
package. The Insert operation contained within the Sybase Open/ADA inter-
face may also be used rather than the Database package. If the DSS code is

Chapter 6 System Interfaces

written in C, the insert operation in the Sybase Open/C interface should be
used. The stored procedure named INSERT_DREDGING_DATA may also be
invoked directly from any language. The DSS does not interact with any other
tables within the SHIP database, or with any other portion of the SHIP
component.

Listed below are the parameters contained within the DSS data structure,
the corresponding field name for the parameter in the DREDGING_DATA
table, and the length, in bytes, of the field. The definition, units, and data for-
mat for each parameter remain the same as listed in tables above. All status
parameters specify the validity of corresponding measurements (see Chapter 3).
Note that values for ten parameters input into the DSS in the original

127-character sensor data record are not contained within the DSS data struc-
ture, nor inserted into the DREDGING_DATA table. These parameters are:
port drag arm velocity, starboard drag arm velocity, port drag arm density,
starboard drag arm density, port drag arm gimbal depth, starboard drag arm
gimbal depth, and ullage meter numbers 1-4.

Parameter Name DREDGING_DATA Field
Field Name Length

Contract 1D (number) CONTRACT_ID 32

Project name PROJECT 32

Dredge name DREDGE 32

Date & time DATE_TIME

X location VESSEL_X

X location data status VESSEL_X_STATUS

Y location VESSEL_Y

Y location data status
Forward draft

Forward draft data status
Aft draft

Aft draft data status
Speed (over ground)
Speed data status

VESSEL_Y_STATUS
VESSEL_DRAFT_FORWARD
VESSEL_DRAFT_FORWARD_STATUS
VESSEL_DRAFT_AFT
VESSEL_DRAFT_AFT_STATUS
VESSEL_SPEED
VESSEL_SPEED_STATUS

Heading VESSEL_HEADING

Heading data status VESSEL_HEADING_STATUS

Course VESSEL_COURSE

Course data status VESSEL_COURSE_STATUS

Port draghead depth DRAGHEAD_DEPTH_PORT

Port draghead depth data status DRAGHEAD_DEPTH_PORT_STATUS
Stbd draghead depth DRAGHEAD_DEPTH_STBD

Stbd draghead depth data status
Avg. hopper level forward

Avg. hopper leve! frwd data status
Avg. hopper level aft

Avg. hopper level aft data status
Avg. hopper level

Avg. hopper lavel data status
Hopper volume

Hopper volume data status
Water depth

Water depth data status

Tide elevation

Tide elevation data status
Hopper door status

Port pump on

Starboard pump on

Port material recovery

Chapter 6 System interfaces

DRAGHEAD_DEPTH_STBD_STATUS
HOPPER_LEVEL_FORWARD
HOPPER_LEVEL_FORWARD_STATUS
HOPPER_LEVEL_AFT
HOPPER_LEVEL_AFT_STATUS
HOPPER_ULLAGE
HOPPER_ULLAGE_STATUS
HOPPER_VOLUME
HOPPER_VOLUME_STATUS
WATER_DEPTH
WATER_DEPTH_STATUS

TIDE

TIDE_STATUS
HOPPER_DOOR_OPEN
PUMP_ON_PORT

PUMP_ON_STBD
PUMP_MATERIAL_PORT

NNSNNMNDONDOONDONDONONDONONONRDONDONORNONONON ®O®

59

60

Starboard material recovery PUMP_MATERIAL_STBD 7
Pump-out on PUMP_OUT_ON 7

Each data record transmitted from the DSS to SHIP must represent sensor
data collected at a maximum interval of 10 sec apart. In the case of the train-
ing and reference DSS, recorded data files may also be transmitted to the SHIP
database. In this case, the user may redefine the time associated with each
data record after the first data record by setting a time interval to be added to
the first record’s time value, as described earlier in Chapter 3. The DSS then
transmits all the recorded data records within a file at the maximum possible
computer communications speed. This allows for faster playback and testing
of the system than is possible otherwise. This feature may not necessarily be
provided on any production DSS component.

SHIP-to-SHORE Interface

Currently the SHIP-to-SHORE interface is performed using the Archive
module. This module copies the data from six SHIP database tables into Unix
archive files, which are then transferred to a storage medium (tape) at the
user’s direction. These files may then be loaded into any DOSIS database
residing within a SHIP or SHORE component. The format for these archive
files is described in the “Archive Files and Procedures” section of this manual.

Outside Access Interface

No specific interface has been developed to allow other software and hard-
ware platforms to interact directly with the Silent Inspector components and
software. There is, however, an interface built directly into the Sybase Data-
base program that allows other software to access the DOSIS database on the
SHIP or SHORE component, provided that the proper user ID and password
are provided.

The Sybase database contains the Open Database Connectivity (ODBC)
driver. External software programs containing this driver can be linked and
data from the DOSIS database can be either inserted or copied. Insertion of
data is permitted only into selected database tables where user input is
required. Data may be copied from all tables. Tables containing measured or
computed values are read only, and cannot be altered by external software
programs.

Chapter 6 System Interfaces

7 SHIP Software Modules

The SHIP component contains the database server executing the relational
DBMS. SHIP also executes user-initiated application software that operates as
clients of the DBMS, accessing information in the database to perform data-
base maintenance, real-time data monitoring, reporting, and graphical data dis-
plays. The SHIP applications software contains several major subsystems, or
modules. Each user-invoked module is either a stand-alone operational com-
ponent, or is composed of multiple operational components. Each module is
user initiated through graphical user interface screens and icons. The user-
invoked modules presently contained within the SHIP system and their func-

tion are:

Module Function

Setup User entry of project and dredge information.

Monitoring User viewing of incoming data.

Downtime User entry of downtime causes and comments (identification of downtime
events is performed automatically within RT Kernel, which is not user-
invoked).

Reports User-initiated display and printing of pre-defined reports.

Plotting User viewing of data within the database.

Backup Automatic backup of selected database tables and data; user-initiated restora-
tion of the database from the backup files.

Archive Combination automatic and user-initiated archiving of selected database
tables and data for transfer to SHORE component and permanent record
keeping.

These modules and their components are described briefly below.

Setup

Information related to a dredging project, including the dredge name and
characteristics, crew, designated dredging and disposal areas, and landmarks
related to the local marine waters can be entered into the system by the user.
This information is entered into the system through the system’s Setup module.

61
Chapter 7 SHIP Software Modules

62

The information is entered by the user into one of six SHIP database tables.
The table names and the information which can be entered into each are listed
below. Characteristics of each data element within these tables are more com-
pletely described in Table 1. Information the user can enter into each table is
listed below.

CREWMEMBER Table:
First name
Last name
Rank
ID (Initials)

DISPOSAL_AREA Table:
Disposal area name .
Four x, y coordinates forming a rectangle to represent the disposal area

DISTRICT Table:
Corps of Engineers District names
Abbreviations for the District names

DREDGE Table:
Dredge name
Dredge owner name
Dredge type
Year built
Vessel beam
Vessel length
Vessel dredge pumps horsepower
Vessel displacement:. empty and full
Vessel maximum speed: empty and full
Vessel draft: fore and aft when empty and loaded
Distance to draft sensors along vessel hull
Hopper maximum capacity
Distance in hopper to ullage sensors

LANDMARK Table:
Landmark name
X, y coordinates of landmark location

PROJECT Table:
Project name
Contract number (ID)
Contractor name
Corps of Engineers District name
Project type: new work or maintenance
Anticipated start/finish dates

STATION (Dredging areas) Table:
Dredging area name
X, y coordinates forming rectangle to represent the dredging area

The SETUP module is activated by clicking on the SETUP icon, and then
clicking on the icon for the type of data the user wishes to enter. Optionally,
the user may use a pull-down menu to access the components within the
SET-UP module. In either case, the user is supplied with a screen listing entry
boxes for all the information which may be entered or changed related to the
database table selected (type of information being input). It is intended that
information may be entered via the SETUP module cither directly on a SHIP

Chapter 7 SHIP Software Modules

system computer or into a portable laptop computer. Information can be
entered into the SHIP database tables via connectivity options provided by the
ODBC capabilities of the Sybase DBMS.

Monitoring

The DATA MONITORING module provides a real-time display of the
data being stored by the DSS in the SHIP database. It accomplishes this by
performing the following five major functions:

a. Displays the most current set of data values stored by the DSS in the
DREDGING_DATA table.

b. Computes and displays the load number associated with the displayed
data values.

c. Computes and displays the current TDM value associated with the
displayed data values.

d. Pilots the computed TDM values over a short time period to allow the
user to see the trend of the vessel’s loading.

QN

Computes and displays the current dredge state associated with the
displayed data values.

The application which accomplishes the above actions is written in Ada
code and is started by clicking on the DATA MONITORING icon on the
SHIP main menu screen.

Downtime

The DOWNTIME module permits the user to display information about
the dredge downtime periods which have been identified and recorded as such
in the database by the system, and to annotate any downtime period with a
cause and a comment, both of which are then stored with the downtime record
within the database. The operator may select to view all downtime events
recorded in the database, or only those for which no cause or comment has
already been entered. Information entered by the user is entered into the
DOWNTIME table within the database. The application to accomplish the
user access and selection of a downtime event, and entry of a cause and com-
ment, is written in ADA code, and is started by clicking on the DOWNTIME
icon on the SHIP main menu screen.

Chapter 7 SHIP Software Modules

63

64

Reports

The REPORT module provides the user the ability to display and print the
following pre-defined reports: trip report, daily report, and job report. Each
report is displayed and printed by a separate software component addressed
through the overall REPORT module written in Ada code. The reports con-
tain the following:

Trip Report Lists the start time and associated data values for all
dredge state changes that occur during a trip (load).
The report contains one entry for each dredge state
change.

Daily Report Lists data values for each trip started during a day,
along with summations of relevant values and duration
of each dredge state over the trips listed in the report.

Job Report Lists summations of relevant values and duration of
each dredge state from the beginning of a project to the
date of the report. This component also updates the
database table PROJECT SUMMARY with this infor-
mation at the user’s option.

The REPORT module allows the user, by clicking on the appropriate icon,
to review a list of the trip or daily reports contained within the database for
any project identified by any contract ID and dredge name. The user may
select the report of interest from the displayed list by clicking on the trip num-
ber or day of interest. The report will then be displayed and optionally
printed. The user cannot change or edit the report.

The job report is always regenerated from the data within the database
whenever the user invokes this component of the REPORT module. The
newly generated job totals will first be displayed and, at the option of the user,
printed and/or entered as updated information within the database.

Plotting

The PLOTTING module permits the user to interactively select data within
the database and generate time series plots of the selected data. This module
uses general purpose plotting software developed specifically for the Silent
Inspector system. The PLOTTING module’s overall controlling software is in
ADA code. This code is activated by clicking on the PLOTTING icon on the
SHIP main menu screen.

Currently the user can select up to four data elements to be plotted at the
same time on the Y axis versus time on the X axis. The values for the data
elements selected can be obtained from the database by selecting a trip

Chapter 7 SHIP Software Modules

number, in which case all values for the trip (for the data elements selected)
will be plotted, or by time interval, in which case only those values within the
specified time interval will be plotted. All data elements to be plotted together
must have the same units so that they may be plotted on the same plot. Time
along the X axis is plotted at a specified scale; therefore, if the data being
plotted span a longer time than can be displayed on the screen, a horizontal
slider bar is provided to allow the user to scroll through the data.

Backup and Archive

Backup and archive are two separate modules which operate in a similar
manner. The function of the backup module is to automatically copy database
data to backup files which would enable the SHIP database to resume operat-
ing after a catastrophic loss. While creation of the backup files is automatic,
restoring the SHIP database using the backup files must be user initiated.

The function of the archive module is to remove old data from the SHIP
database for transmission to SHORE components and permanent record keep-
ing. The archive module automatically transfers data to Unix files, then the
user must initiate transfer of the Unix files to another medium (disk, tape, etc.)
for transfer, storage, and loading into a SHORE component.

The backup and archive modules copy data contained in six user tables
within the SHIP database to exteral files. These six tables are:

« DOWNTIME

» DREDGING_DATA

« LOAD

« LOAD_DISPOSAL_AREA
* LOAD_STATION

» STATE

The backup and archiving modules are currently not accessible and cannot
be initiated from the graphical user interface screens specific to the Silent
Inspector system. These modules are different from most of the other user-
invoked modules in that they are not controlled by ADA code, but instead are
currently launched using Unix shell scripts entered on the main Unix user
interface screen. All scripts are written using Unix ¢ shell (csh) code.
Because these Unix scripts are not launched by clicking on icons to activate
ADA code, they are described and listed below, as the user must enter them to
activate certain parts of the backup and archive processes.

Chapter 7 SHIP Software Modules

65

66

Unix environment variables

Certain Unix environment variables must be set to permit the backup/
recovery and the archive/restore facilities to work correctly. They may be set
for an individual user by adding their definitions to the user’s .login file for
the ¢ shell or the .profile file for the Bourne shell in the user’s home directory.
They may be set for all users by adding their definitions to the cshrc file for
the ¢ shell or the profile file for the Bourne shell in the /etc directory. The
syntax for setting an environment variable is shown below for both shells.

¢ shell

Boume shell

setenv variable-name value
Example: setenv DOSIS_ARCHIVE /usr/dosis/archive

variable-name=value
export variable-name

Example: DOSIS_ARCHIVE=/usr/dosis/archive
export DOSIS_ARCHIVE

The following list contains the environment variables that must be defined
for the backup/recovery and archive/restore facilities. Note that the variable
names are in upper case. A brief description is included for each variable.

Variable

DOSIS_ARCHIVE

DOSIS_BACKUP

DOSIS_COMMAND_DIR

DOSIS_DUMP_DEVICE

DOSIS_TAPE

SA_PASSWORD

Description

The full path name of the directory used by the archive and
restore facility to store files. During an archive operation, the
files written from the database are stored in this directory prior
to being written to tape. During a restore operation, the files
read from tape are stored in this directory prior to being
loaded into the database.

The full path name of the directory used by the backup and
recovery facility to store files. The database dump file and the
transaction log files are stored in this directory.

The full path name of the directory that contains the command
files (e.g., dosis_restore, dosis_clean, etc.) used by the opera-
tor to initiate recovery, archive and restore operations.

The device name of the Sybase dump device on which the
database backup and transaction log files are written. Refer
to the description of the sp_addumpdevice command in the
Sybase Manuals.

Default tape device (e.g., /dev/rmt0 for QIC tape device) on
which archive files are written during an archive operation or
read during a restore operation.

The Sybase password to be used when the recovery, archive,
and restore commands signon to isql.

Although all variables do not have functionality in all scripts, all variables
must be set when running any script. This is because a common script,
check_vars, is called from all the other scripts to verify that environment

Chapter 7 SHIP Software Modules

variables have been set. Any script that automatically runs one of the DOSIS
backup and archive scripts will have to set these environment variables
appropriately.

The check_vars script is called from all the other backup or archive scripts
to verify that all required environment variables have been set. Specifically, it
performs the following checks:

a. SA_PASSWORD environment variable is set, and is, in fact, the
Sybase password for the user “sa.”

b. DOSIS_ARCHIVE environment variable is set and designates a
directory.

¢. DOSIS_BACKUP environment variable is set and designates a
directory.

d. DOSIS_COMMAND_DIR environment variable is set and designates a
directory.

e. DOSIS_DUMP_DEVICE environment variable is set and designates a
dump device on the Sybase SQL server.

The check_vars script also sets several shell programming variables for the
convenience of other scripts.

Backup files and procedures

There are two types of backup files: database backup and transaction log
backup files. The file created by a database backup includes the entire con-
tents of the six SHIP database tables listed earlier in this section, whereas the
file created by a transaction log backup includes only data added to those
tables since the last transaction log backup. The backup module performs a
database backup once a week, and a transaction log backup once a day,
although these frequencies may be adjusted by a systems engineer. One previ-
ous cycle of database and transaction log backup files are maintained, and
older backup files are automatically deleted. Database backup files are named:
yyyymmddX.dbd, where yyyymmdd represents the computer’s numeric encod-
ing for the date the backup was performed and X is a character suffix (a to z)
used to sequence database backups made on the same day. Transaction log
backup files are named: yyyymmddX.tlb, where the variables are the same as
for the database backup name.

If a SHIP database loss occurred, the user must initiate restoration of the
SHIP database using the backup files. This will not occur automatically. The
Unix script to perform this action is entered into a Unix window accessed by
clicking on the Unix main screen, and then clicking on K-Shell within the
Unix menu. The Unix backup scripts and their purpose are:

Chapter 7 SHIP Software Modules

67

68

Unix Script Purpose

dosis_dumpdb Dumps the entire contents of the six SHIP database tables to Unix
backup files once per week.

dosis_dumptran Dumps the data acquired within the six SHIP database tables since
the last transaction log dump to Unix backup files once per day.

dosis_restore Restores the contents of the six SHIP database tables using the data-
base backup and transaction log Unix backup files.

The Unix scripts dosis_dumpdb and dosis_dumptran are automatically acti-
vated, while the dosis_restore script must be user entered. The specific actions
which occur with each script are listed below.

dosis_dumpdb Script

The dosis_dumpdb script performs a Sybase database dump of the DOSIS
database to begin a new backup cycle. In addition, it automatically deletes all
old database and transaction log dumps, except for the most recent. The fol-
lowing specific operations are performed:

a. Remove the files for all old database dumps, except for the most recent.

b. Remove all transaction log dumps corresponding to each database dump
removed.

c. Determine the correct name for the new database dump. (Dump files
are named with the date, as yyyymmdd, followed by an alphabetic
suffix (a, b, c, etc.) to sequentially indicate dumps on that date. Provi-
sion is made for several backup dumps occurring on the same day,
since various archive operations can cause data backup dumps to occur.

d. Ensure that the ’select into’ option (set for various archive operations,
as noted herein) is turned off for the DOSIS database.

e. Truncate the transaction log in the DOSIS database.

/. Dump the DOSIS database and rename the dump file as required by the
DOSIS backup naming conventions. The dump command used on the
Sybase SQL server causes the dump to always be sent to the same file;
the file must be renamed to save it in accordance with the DOSIS
dump naming conventions.

Dosis_dumpdb is automated to run once a week; however, this frequency
can be altered if desired. As noted elsewhere, database dumps are also taken
as part of various archive operations, and the operator can also explicitly initi-
ate a database dump at any time.

Chapter 7 SHIP Software Modules

dosis_dumptran Script

The dosis_dumptran script performs a Sybase transaction log dump of the
DOSIS database to save the latest incremental dump within a backup cycle.
The following specific operations are performed.

1. Determine the correct name for the new transaction log dump. (Dump
files are named with the date, as yyyymmdd, followed by an alphabetic
suffix (a, b, c, etc.) to sequentially indicate dumps on that date. Provi-
sion is made for several backup dumps occurring on the same day,
since various archive operations cause backup dumps to be recorded.

2. Dump the DOSIS transaction log and rename the dump file as required
by the DOSIS backup naming conventions. The dump command used
on the Sybase SQL server causes the dump to always be sent to the
same file; the file must be renamed to save it in accordance with the
DOSIS dump naming conventions.

It is planned that dosis_dumptran will be automated to run once a day;
however, this frequency can be altered if desired. As noted elsewhere, trans-
action log dumps are also taken as part of various archive operations, and the
operator can explicitly initiate a database dump.

dosis_restore Script

The dosis_restore script loads the latest database dump, followed by subse-
quent transaction log dumps, to restore the DOSIS database after it has been
lost due to some catastrophic circumstance. The dosis_restore script will be
run only upon explicit operator request. The following specific actions are
performed: :

a. Determine the name of the latest database dump (or give an error if no
database dumps are available.)

b. Load the latest database dump.

c. Load, in sequence, all transaction log dumps taken subsequent to that
database dump.

Once the data recovery process has been completed, the Silent Inspector
system must be restarted by re-entering a user ID and password.
Archive files and procedures

Data from the six database tables listed earlier are automatically archived to

Unix files once a month. This frequency may be changed by a systems engi-
neer. Users may also initiate the archiving process. The archiving process

Chapter 7 SHIP Software Modules

69

70

also deletes the data from the six SHIP database files after it has copied this
data to the Unix files. The Unix archive files are named yyyymmddXXX.ad,
where yyyymmdd designates the date of archiving, and XXX designates the
database table name. The XXX abbreviations for the table names are:

SHIP Database Table Name XXX Abbreviation

DOWNTIME DWN
DREDGING_DATA DDA
LOAD_DISPOSAL_AREA LDA
LOAD_STATION LST
LOAD_TABLE LDT
STATE STA

Once the Unix archive files have been created, the user must initiate the
transfer or copying of the files to other medium, such as disk or tape, deleting
the Unix files from the hard drive, and loading the files into a separate SHIP
or SHORE unit. Unix script to perform these actions, as well as initiate the
archive process, are entered into a Unix window accessed by clicking on the
Unix main screen, and then clicking on K-Shell within the Unix menu. The
Unix scripts and their purposes are:

Unix Script Purpose

dosis_archive Forces an archive of the six database tables to Unix files, and deletes
these data from the SHIP database tables.

dosis_tape Copies the Unix archive files for a given date to a tape.

dosis_clean Deletes Unix archive files selected by the user from the system hard
drive.

dosis_load Loads archived files into a SHIP or SHORE database.

The following specific actions occur for each script.

dosis_archive Script

The dosis_archive script writes data for all completed loads to six archive
files (corresponding to the six SHIP database tables), then deletes all data
within the SHIP tables which were archived. The following specific operations
are performed.

1. Verify that an archive has not already been performed on the current
day (Archive files are named to include the date and should not be
overwritten since archived data are deleted from the database.)

2. Dump the Sybase transaction log. . This is done to enable recovery to
the time of the archive if something goes wrong with the deletion of
data during the archive process.

Chapter 7 SHIP Software Modules

3. Enable “select into” in the DOSIS database. This is done to allow the
archived data to be subset from the database via “select into” (the most
expedient method).

4. Bulk copy data for the six dynamic tables to the archive files. Various
checks are made to ensure that all data that are supposed to be archived
have been successfully bulk copied.

5. Delete data that had been archived from the six dynamic tables. The
deletions are done after the archive is complete, so that no data will be
deleted if any archive operation fails.

6. Dump the DOSIS database (via script dosis_dumpdb, which also resets
the “select into” option). This is done because the ’select into’ opera-
tion disables future transaction log dumps, so it is necessary to dump
the entire database to begin a new backup cycle.

dosis_tape Script

The dosis_tape script copies Unix archive files (created by the
dosis_archive script) for a given date to a tape device and will run only upon
explicit operator request. The archive files are not deleted after the tape is
created in case it is desired to make several tapes of the same archive. The
dosis_clean script is provided to remove all archive files for a given date. The
following specific actions are performed:

a. Decide whether a date has been specified as an argument. If no date is
specified, then the date of the oldest archive is used. If the command
line contains two arguments, the first is the date (in yyyymmdd format),
and the second is the tape device to use. If the command line contains
only one argument, the single argument could be either the date or the
tape device; dosis_tape assumes that it is a date if it begins with 19 or
20; otherwise, the single argument is taken to be a device name. If the
command line contains no arguments, then neither the date nor the tape
device has been explicitly specified.

b. Decide whether or not a tape device has been specified as an argument.
If no tape device is specified, the value of the environment variable
DOSIS_TAPE is used for the name of the tape device.

c. Verify that the tape device specified is a valid device.

d. Verify that all archive files are present for the date to be used.

e. Create a saved data set on the target tape device containing the archive
files from the appropriate date for the six dynamic tables.

Chapter 7 SHIP Software Modules

71

72

dosis_clean Script

The dosis_clean script deletes all archive files for a specified date or for
the oldest date stored, if no date is specified as a parameter. This feature only
runs by explicit operator action. The following specific operations are
performed.

a. Determine whether or not a date has been given as a parameter.

b. Use the date specified or the oldest date on an archive file to delete all
archive files for that date.

dosis_load Script

The dosis_load script loads a set of archived data into a DOSIS database.
The dosis_load script will typically be run only at shore sites to load archived
data received from various dredges. The following specific actions are
performed.

a. Determine the name of the tape drive from which the archived data are
to be loaded. The tape drive may be specified by command line argu-
ment or by the value of the environment variable DOSIS_TAPE.

b. Verify that the tape drive specified is a valid device.
c. Copy the files from the tape to the $DOSIS_ARCHIVE directory.
d. Verify that the correct number of files have been read from the tape.

e. Determine the date of the archive from the names of the files and
verify that all files came from the same date.

f. Verify that files corresponding to all dynamic tables saved in the
archive have been read from the tape. (There is one file for each table,
since the file is created by bulk copy. The name of the table is
encoded in the name of the file.)

g. Dump the Sybase transaction log. This is done to enable recovery to
the time of the load if a partial load causes inconsistent data to be
entered into the database.

h. Enable “select into” in the DOSIS database. This is done to allow the
archived data to be loaded via bulk copy (the most expedient method)
and to allow simple script creation of a table used to verify that dupli-
cate data are not being loaded.

i. Verify that data being loaded do not duplicate data already present in
the database. This is done by copying the archived LOAD_TABLE

Chapter 7 SHIP Software Modules

into a table specifically created for this purpose, then seeing if the most
current archived load already appears in the database.

J. Bulk copy data for the six dynamic tables into the database from the
archive files. ~

k. Delete the archive files on disk.

I. Dump the DOSIS database (via script dosis_dumpdb which also resets
the ’select into’ option). This is done because the select into operation
disables future transaction log dumps; so it is necessary to dump the
entire database to begin a new backup cycle.

Chapter 7 SHIP Software Modules

73

Appendix A
Stored Procedures

The stored procedures used with the Silent Inspector software are listed
below in bold, along with their purpose and coding. These procedures are
stored in a file that can be submitted to Sybase using interactive structured
query language (isql). When this file is submitted to Sybase via isql, any
existing stored procedure having the same name is deleted and the new proce-
dure is created. The file name is procscomp.sql, and it can be submitted to
isql as follows: ‘

isql < procscomp.sql

The stored procedures for the Silent Inspector system are:

INSERT_DOWNTIME_DATA
Purpose: Insert a downtime event in the DOWNTIME table.
Code: :

if exists (select * from sysobjects where vid = user_id() and
name = 'INSERT_DOWNTIME_DATA")
drop proc INSERT_DOWNTIME_DATA
go
create proc INSERT_DOWNTIME_DATA
(@CONTRACT_ID CONTRACT_IDENTIFIER,
@PROJECT PROJECT_NAME,
@DREDGE DREDGE_NAME,
@START_DATE_TIME datetime,
@END_DATE_TIME datetime,
@LOAD_NO LOAD_NUMBER,
@CAUSE DOWNTIME_CAUSE,
@COMMENT FREE_FORM_TEXT) as
Insert into DOWNTIME
values
(@CONTRACT_ID,
@PROJECT,
@DREDGE,
@START_DATE_TIME,
@END_DATE_TIME,
@LOAD_NO,
@CAUSE,
@COMMENT)
80

Appendix A Stored Procedures

A1l

A2

INSERT_DREDGING_DATA
Purpose: Insert dredging data in the DREDGING DATA table.
Code:

if exists (select * from sysobjects where uid = user_id() and
name = 'INSERT_DREDGING_DATA’)
drop proc INSERT_DREDGING_DATA
go
create proc INSERT_DREDGING_DATA

(@CONTRACT_ID CONTRACT_IDENTIFIER,
@PROJECT PROJECT_NAME,
@DREDGE DREDGE_NAME,
@DATE_TIME datetime,

@VESSEL_X COORDINATE_TYPE,
@VESSEL_X_STATUS STATUS,
@VESSEL_Y COORDINATE_TYPE,
@VESSEL_Y_STATUS STATUS,

@VESSEL_DRAFT_FORWARD FEET_TYPE,
@VESSEL_DRAFT_FORWARD_STATUS STATUS,

@VESSEL_DRAFT_AFT FEET_TYPE,
@VESSEL_DRAFT_AFT_STATUS STATUS,
@VESSEL_SPEED KNOTS_TYPE,
@VESSEL_SPEED_STATUS STATUS,
@VESSEL_HEADING DEGREES_TYPE,
@VESSEL_HEADING_STATUS STATUS,
@VESSEL_COURSE DEGREES_TYPE,

@VESSEL_COURSE_STATUS STATUS,

@DRAGHEAD_DEPTH_PORT FEET_TYPE,
@DRAGHEAD_DEPTH_PORT_STATUS STATUS,
@DRAGHEAD_DEPTH_STBD FEET_TYPE,
@DRAGHEAD_DEPTH_STBD_STATUS STATUS,
@HOPPER_LEVEL_FORWARD FEET_TYPE,
@HOPPER_LEVEL_FORWARD_STATUS STATUS,

@HOPPER_LEVEL_AFT FEET_TYPE ,
@HOPPER_LEVEL,_AFT_STATUS STATUS ,
@HOPPER_VOLUME CUBIC_YARDS_TYPE
@HOPPER_VOLUME_STATUS STATUS ,
@HOPPER_ULLAGE FEET_TYPE ,
@HOPPER_ULLAGE_STATUS STATUS .
@WATER_DEPTH FEET_TYPE ,
@WATER_DEPTH_STATUS STATUS .
@TIDE FEET_TYPE ,
@TIDE_STATUS STATUS ,
@HOPPER_DOOR_OPEN BOOLEAN_TYPE
@PUMP_ON_PORT BOOLEAN_TYPE .,
@PUMP_ON_STBD BOOLEAN_TYPE
@PUMP_MATERIAL_PORT BOOLEAN_TYPE
@PUMP_MATERIAL_STBD BOOLEAN_TYPE
@PUMP_OUT_ON BOOLEAN_TYPE
@LOAD_NO LOAD_NUMBER ,
@STATE DREDGE_STATE

@TDM LONG_TONS_TYPE) as

insert into DREDGING_DATA
values
(@CONTRACT_ID s

@PROJECT s
@DREDGE ,
@DATE_TIME s
@VESSEL_X)
@VESSEL_X_STATUS s
@VESSEL_Y ,
@VESSEL_Y_STATUS ,

Appendix A

Stored Procedures

@VESSEL_DRAFT_FORWARD
@VESSEL_DRAFT_FORWARD_STATUS,
@VESSEL_DRAFT_AFT ,
@VESSEL_DRAFT_AFT_STATUS
@VESSEL_SPEED ,
@VESSEL_SPEED_STATUS
@VESSEL_HEADING ,
@VESSEL_HEADING_STATUS
@VESSEL_COURSE ,
@VESSEL_COURSE_STATUS
@DRAGHEAD_DEPTH_PORT
@DRAGHEAD_DEPTH_PORT_STATUS ,
@DRAGHEAD_DEPTH_STBD
@DRAGHEAD_DEPTH_STBD_STATUS ,
@HOPPER_LEVEL_FORWARD
@HOPPER_LEVEL_FORWARD_STATUS,
@HOPPER_LEVEL_AFT ,
@HOPPER_LEVEL_AFT_STATUS
@HOPPER_VOLUME .,
@HOPPER_VOLUME_STATUS
@HOPPER_ULLAGE ,
@HOPPER_ULLAGE_STATUS
@WATER_DEPTH ,
@WATER_DEPTH_STATUS ,
@TIDE ,
@TIDE_STATUS ,
@HOPPER_DOOR_OPEN ,
@PUMP_ON_PORT
@PUMP_ON_STBD ,
@PUMP_MATERIAL_PORT ,
@PUMP_MATERIAL_STBD .
@PUMP_OUT_ON ,
@LOAD_NO ,

@STATE ,
@TDM)
8o

INSERT_LOAD DATA
Purpose: Insert summary data for a load in the LOAD table.
Code:
if exists (select * from sysobjects where uid = user_id() and
name = 'INSERT_LOAD_DATA’)

drop proc INSERT_LOAD_DATA
go
create proc INSERT_LOAD_DATA
(@CONTRACT_ID CONTRACT_IDENTIFIER,

@PROJECT PROJECT_NAME,
@DREDGE DREDGE_NAME,
@LOAD_NO LOAD_NUMBER,
@DATE datetime,

@PUMPING_TIME MINUTES_TYPE,
@TURNING_TIME MINUTES_TYPE,
@SAILING_FULL_TIME MINUTES_TYPE,
@DUMPING_TIME MINUTES_TYPE,
@SAILING_EMPTY_TIME MINUTES_TYPE,

@DOWN_TIME MINUTES_TYPE,
@TOTAL_TIME MINUTES_TYPE,
@TDM LONG_TONS_TYPE,
@COMMENT FREE_FORM_TEXT) as

insert into LOAD_TABLE

Appendix A Stored Procedures

A3

A4

values

(@CONTRACT_ID,
@PROJECT,
@DREDGE,
@LOAD_NO,
@DATE,
@PUMPING_TIME,
@TURNING_TIME,
@SAILING_FULL_TIME,
@DUMPING_TIME,
@SAILING_EMPTY_TIME,
@DOWN_TIME,
@TOTAL_TIME,
@TDM,
@COMMENT)

go

INSERT_LOAD_DISPOSAL_AREA

Purpose: Insert a dump event for a rectangular disposal area in the
LOAD DISPOSAL_AREA table.

Code:

if exists (select * from sysobjects where uid = user_id() and
name = 'INSERT_LOAD_DISPOSAL_AREA’)
drop proc INSERT_LOAD_DISPOSAL_AREA

go
create proc INSERT_LOAD_DISPOSAL_AREA
(@CONTRACT_ID CONTRACT_IDENTIFIER,
@PROJECT PROJECT_NAME,
@DREDGE DREDGE_NAME,
@LOAD_NO LOAD_NUMBER,
@DISPOSAL_AREA AREA_NAME,

@DISPOSAL_START_DATE_TIME datetime) as

insert into LOAD_DISPOSAL_AREA
values
(@CONTRACT_ID,

@PROJECT,

@DREDGE,

@LOAD_NO,

@DISPOSAL_AREA, -

@DISPOSAL_START_DATE_TIME)

go

INSERT_LOAD_STATION

Purpose: Insert a dredging event for a station (rectagular dredging area)
in the LOAD _STATION table.

Code:

if exists (select * from sysobjects where uid = user_id() and
name = 'INSERT_LOAD_STATION")
drop proc INSERT_LOAD_STATION

go
create proc INSERT_LOAD_STATION
(@CONTRACT_ID CONTRACT_IDENTIFIER,
@PROJECT PROJECT_NAME,
@DREDGE DREDGE_NAME,
@LOAD_NO LOAD_NUMBER,
@STATION_AREA AREA_NAME,

@STATION_START_DATE_TIME datetime) as
insert into LOAD_STATION

Appendix A Stored Procedures

values
(@CONTRACT_ID,
@PROJECT,
@DREDGE,
@LOAD_NO,
@STATION_AREA,
@STATION_START_DATE_TIME)

go

INSERT_PROJECT_DREDGE

Purpose: Insert a dredge assigned to a project in the
PROJECT _DREDGE table.

Code:

if exists (select * from sysobjects where uid = user_id() and
name = 'INSERT_PROJECT_DREDGE’)
drop proc INSERT_PROJECT_DREDGE
go
create proc INSERT_PROJECT_DREDGE

(@CONTRACT_ID CONTRACT_IDENTIFIER,
@PROJECT PROJECT_NAME,
@DREDGE DREDGE_NAME,
@CAPTAIN CREW_ID,
@SPEED_TOLERANCE KNOTS_TYPE,
@DEPTH_TOLERANCE FEET_TYPE,
@DRAFT_LIMIT FEET_TYPE,
@DRAG_LIMIT FEET_TYPE,
@TRIM_LIMIT FEET_TYPE,
@TURN_LIMIT DEGREES_PER_MINUTE_TYPE,

@DRY_MATERIAL_MASS_DENSITY GRAMS_PER_LITER_TYPE,
@WATER_MASS_DENSITY GRAMS_PER_LITER_TYPE,
@DREDGE_AIDS FREE_FORM_TEXT,
@COMMENT FREE_FORM_TEXT) as
insert into PROJECT_DREDGE
values
(@CONTRACT_ID,
@PROJECT,
@DREDGE,
@CAPTAIN,
@SPEED_TOLERANCE,
@DEPTH_TOLERANCE,
@DRAFT_LIMIT,
@DRAG_LIMIT,
@TRIM_LIMIT,
@TURN_LIMIT,
@DRY_MATERIAL_MASS_DENSITY,
@WATER_MASS_DENSITY,
@DREDGE_AIDS,
@COMMENT)
go

INSERT_PROJECT_SUMMARY_DATA

table.
Code:

if exists (select * from sysobjects where uid = user_id() and
name = 'INSERT_PROJECT_SUMMARY_DATA’)
drop proc INSERT_PROJECT_SUMMARY_DATA

go

Purpose: Insert a project summary record in the PROJECT SUMMARY

Appendix A Stored Procedures

A5

A6

create proc INSERT_PROJECT_SUMMARY_DATA

(@CONTRACT_ID

CONTRACT_IDENTIFIER,

@PROJECT PROJECT_NAME,
@DREDGE DREDGE_NAME,
@OPENING_DATE datetime,
@CLOSING_DATE datetime,
@PUMPING_TIME MINUTES_TYPE,
@TURNING_TIME MINUTES_TYPE,
@SAILING_FULL_TIME MINUTES_TYPE,
@DUMPING_TIME MINUTES_TYPE,
@SAILING_EMPTY_TIME MINUTES_TYPE,
@NON_EFFECTIVE_TIME MINUTES_TYPE,

@LOST_TIME
@TO_BE_DEFINED_TIME
@FUEL_AND_SUPPLIES_TIME

MINUTES_TYPE,

MINUTES_TYPE,
MINUTES_TYPE,

@WHARF_OR_ANCHORAGE_TIME MINUTES_TYPE,
@OPPOSING_NATURAL_ELEMENT_TIME MINUTES_TYPE,
@TRAFFIC_AND_BRIDGES_TIME MINUTES_TYPE,
@MINOR_OPERATING_REPAIRS_TIME MINUTES_TYPE,
@TRANSFER_BETWEEN_WORKS_TIME = MINUTES_TYPE,

@LAY_TIME MINUTES_TYPE,
@FIRE_AND_BOAT_DRILLS_TIME MINUTES_TYPE,
@MISCELLANEOUS_TIME MINUTES_TYPE,
@MAJOR_REPAIRS_TIME MINUTES_TYPE,
@CESSATION_TIME MINUTES_TYPE,
@COLLISIONS_TIME MINUTES_TYPE,
@ESTIMATED_COST money,
@JOB_TO_DATE_COST money,
@COST_PER_MINUTE money,

@TONS_RETAINED

insert into PROJECT_SUMMARY

values '

(@CONTRACT_ID,
@PROIJECT,
@DREDGE,
@OPENING_DATE,
@CLOSING_DATE,
@PUMPING_TIME,
@TURNING_TIME,
@SAILING_FULL_TIME,
@DUMPING_TIME,
@SAILING_EMPTY_TIME,
@NON_EFFECTIVE_TIME,
@LOST_TIME,
@TO_BE_DEFINED_TIME,
@FUEL_AND_SUPPLIES_TIME,
@WHARF_OR_ANCHORAGE_TIME,
@OPPOSING_NATURAL_ELEMENT_TIME,
@TRAFFIC_AND_BRIDGES_TIME,
@MINOR_OPERATING_REPAIRS_TIME,
@TRANSFER_BETWEEN_WORKS_TIME,
@LAY_TIME,
@FIRE_AND_BOAT_DRILLS_TIME,
@MISCELLANEOUS_TIME,
@MAJOR_REPAIRS_TIME,
@CESSATION_TIME,
@COLLISIONS_TIME,
@ESTIMATED_COST,
@JOB_TO_DATE_COST,
@COST_PER_MINUTE,
@TONS_RETAINED)

go

LONG_TONS_TYPE) as

Appendix A

Stored Procedures

INSERT_STATE
Purpose: Insert a state change record for a load in the STATE table.
Code:

if exists (select * from sysobjects where vid = user_id() and
name = 'INSERT_STATE’)
drop proc INSERT_STATE
go
create proc INSERT_STATE

(@CONTRACT_ID CONTRACT_IDENTIFIER,

@PROJECT PROJECT_NAME,
@DREDGE DREDGE_NAME,
@LOAD_NO LOAD_NUMBER,
@START_DATE_TIME datetime,
@VESSEL_X COORDINATE_TYPE,
@VESSEL_Y COORDINATE_TYPE,
@VESSEL_HEADING DEGREES_TYPE,
@VESSEL_SPEED KNOTS_TYPE,

@VESSEL_DRAFT_FORWARD FEET_TYPE,
@VESSEL_DRAFT_AFT FEET_TYPE,
@PORT_PUMP_STATUS BOOLEAN_TYPE,
@DRAGHEAD_DEPTH_PORT FEET_TYPE,
@DRAGHEAD_ELEVATION_PORT FEET_TYPE,
@STBD_PUMP_STATUS BOOLEAN_TYPE,
@DRAGHEAD_DEPTH_STBD FEET_TYPE,
@DRAGHEAD_ELEVATION_STBD FEET_TYPE,
@TIDE FEET_TYPE,
@STATE DREDGE_STATE) as

insert into STATE

values

(@CONTRACT_ID,
@PROJECT,
@DREDGE,
@LOAD_NO,
@START_DATE_TIME,
@VESSEL_X,
@VESSEL Y,
@VESSEL_HEADING,
@VESSEL_SPEED,
@VESSEL_DRAFT_FORWARD,
@VESSEL_DRAFT_AFT,
@PORT_PUMP_STATUS,
@DRAGHEAD_DEPTH_PORT,
@DRAGHEAD_ELEVATION_PORT,
@STBD_PUMP_STATUS,
@DRAGHEAD_DEPTH_STBD,
@DRAGHEAD_ELEVATION_STBD,
@TIDE,
@STATE)

go

SELECT_DISPOSAL_AREA DISTINCT
Purpose: Retrieve a unique disposal area having the specified
AREA_NAME from the DISPOSAL AREA table.
Code:
if exists. (select * from sysobjects where uid = user_id() and
name = "SELECT_DISPOSAL_AREA_DISTINCT’)
drop proc SELECT_DISPOSAL_AREA_DISTINCT
go

A
Appendix A Stored Procedures 7

A8

create proc SELECT_DISPOSAL_AREA_DISTINCT (@NAME AREA_NAME) as

select BOUNDARY_O1_X, BOUNDARY_01_Y, BOUNDARY_02_X, BOUNDARY _02_Y,
BOUNDARY_03_X, BOUNDARY_03_Y, BOUNDARY_04_X, BOUNDARY_04_Y,
BOUNDARY_05_X, BOUNDARY_05_Y, BOUNDARY_06_X, BOUNDARY_06_Y,
BOUNDARY_07_X, BOUNDARY_07_Y, BOUNDARY_08_X, BOUNDARY_08_Y,
BOUNDARY_09_X, BOUNDARY_09_Y, BOUNDARY_10_X, BOUNDARY_10_Y

from DISPOSAL_AREA

where NAME = @NAME

go

SELECT DOWNTIME_DISTINCT
Purpose: Retrieve a unique downtime event having the specified
CONTRACT ID, PROJECT, DREDGE and
START DATE_TIME from the DOWNTIME table.
Code:

if exists (select * from sysobjects where uid = user_id() and
name = "SELECT_DOWNTIME_DISTINCT")
drop proc SELECT_DOWNTIME_DISTINCT
g0
create proc SELECT_DOWNTIME_DISTINCT
(@CONTRACT_ID CONTRACT_IDENTIFIER,
@PROJECT PROJECT_NAME,
@DREDGE DREDGE_NAME,
@START_DATE_TIME datetime) with recompile as
select END_DATE=convert(char(6), END_DATE_TIME, 12),
END_TIME=convert(float, 60 * 60 * datepart(hh,END_DATE_TIME) +
60 * datepart(mi,END_DATE_TIME) +
datepart(ss, END_DATE_TIME) +
.001 * datepart(ms,END_DATE_TIME)),
LOAD_NO, CAUSE, COMMENT
from DOWNTIME

where CONTRACT_ID = @CONTRACT_ID

and PROJECT = @PROJECT

and DREDGE = @DREDGE

and START_DATE_TIME = @START_DATE_TIME
go

SELECT_LATEST _DREDGING_DATA

Purpose: Retrieve the record having the latest date/time from the
DREDGING _DATA table.

Code:

if exists (select * from sysobjects where uid = user_id() and
name = "SELECT_LATEST_DREDGING_DATA’)
drop proc SELECT_LATEST_DREDGING_DATA
go
create proc SELECT_LATEST_DREDGING_DATA with recompile as
select CONTRACT_ID,
PROJECT,
DREDGE,
convent(char(6), DATE_TIME, 12),
convert(float, 60 * 60 * datepart(hh, DATE_TIME) +
60 * datepart(mi,DATE_TIME) +
datepart(ss, DATE_TIME) +
.001 * datepart(ms,DATE_TIME)),
VESSEL_X,
VESSEL_X_STATUS,
VESSEL_Y,
VESSEL_Y_STATUS,

Appendix A Stored Procedures

VESSEL_DRAFT_FORWARD,
VESSEL_DRAFT_FORWARD_STATUS,
VESSEL_DRAFT_AFT,
VESSEL_DRAFT_AFT_STATUS,
VESSEL_SPEED,
VESSEL_SPEED_STATUS,
VESSEL_HEADING,
VESSEL_HEADING_STATUS,
VESSEL_COURSE,
VESSEL_COURSE_STATUS,
DRAGHEAD_DEPTH_PORT,
DRAGHEAD_DEPTH_PORT_STATUS,
DRAGHEAD_DEPTH_STBD,
DRAGHEAD_DEPTH_STBD_STATUS,
HOPPER_LEVEL_FORWARD,
HOPPER_LEVEL_FORWARD_STATUS,
HOPPER_LEVEL_AFT,
HOPPER_LEVEL_AFT_STATUS,
HOPPER_VOLUME,
HOPPER_VOLUME_STATUS,
HOPPER_ULLAGE,
HOPPER_ULLAGE_STATUS,
WATER_DEPTH,
WATER_DEPTH_STATUS,
TIDE,
TIDE_STATUS,
HOPPER_DOOR_OPEN,
PUMP_ON_PORT,
PUMP_ON_STBD,
PUMP_MATERIAL_PORT,
PUMP_MATERIAL_STBD,
PUMP_OUT_ON,
LOAD_NO,
STATE,
TDM
from DREDGING_DATA
where DATE_TIME =
(select max(DATE_TIME)
from DREDGING_DATA)

80

SELECT_LOAD_DISTINCT

Purpose: Retrieve a unique load record having the specified
CONTRACT ID, PROJECT, DREDGE and LOAD_NO from
the LOAD table.

Code:

if exists (select * from sysobjects where uid = user_id() and
name = 'SELECT_LOAD_DISTINCT")
drop proc SELECT_LOAD_DISTINCT
g0
create proc SELECT_LOAD_DISTINCT
(@CONTRACT_ID CONTRACT_IDENTIFIER,

@PROJECT PROJECT_NAME,
@DREDGE DREDGE_NAME,
@LOAD_NO LOAD_NUMBER) with recompile as

select START_DATE=convent(char(6), DATE, 12),
START_TIME=convert(float, 60 * 60 * datepart(hh,DATE) +
60 * datepart(mi,DATE) +
datepart(ss DATE) +
.001 * datepart(ms,DATE)),

Appendix A Stored Procedures

A9

A10

PUMPING_TIME, TURNING_TIME, SAILING_FULL_TIME, DUMPING_TIME,
SAILING_EMPTY_TIME, DOWN_TIME, TOTAL_TIME, TDM, COMMENT

from LOAD_TABLE

where CONTRACT_ID = @CONTRACT_ID
and PROJECT = @PROJECT

and DREDGE = @DREDGE

and LOAD_NO = @LOAD_NO

go

SELECT MIN MAX_DATE_TIME

Purpose: Retrieve the minimum and maximum dateltimes that exist in

records in the DREDGING_DATA table.
Code:

if exists (select * from sysobjects where uid = user_id() and
name = 'SELECT_MIN_MAX_DATE_TIME’)
drop proc SELECT_MIN_MAX_DATE_TIME
go
create proc SELECT_MIN_MAX_DATE_TIME
(@CONTRACT_ID CONTRACT_IDENTIFIER,
@PROJECT PROJECT_NAME,
@DREDGE DREDGE_NAME) with recompile as
select MIN_DATE=convert(char(6),min(DATE_TIME),12),
MIN_TIME=convert(float,60*60*datepart(hh,min(DATE_TIME)) +
60*datepart(mm,min(DATE_TIME)) +
datepart(ss,min(DATE_TIME)) +
0.001*datepart(ms,min(DATE_TIME))),
MAX_DATE=convert(char(6),max(DATE_TIME),12),
MAX_TIME=convert(float,60*60*datepart(hh,max(DATE_TIME)) +
60*datepart(mm,max(DATE_TIME)) +
datepart(ss,max(DATE_TIME)) +
0.001*datepart(ms,max(DATE_TIME)))
from DREDGING_DATA

where CONTRACT_ID = @CONTRACT_ID
and PROJECT = @PROJECT

and DREDGE = @DREDGE

go

SELECT_PROCESSED_DREDGING_DATA

Purpose: Retrieve the record having the latest date/time that has been
processed (been assigned a state) by the RT Kernel program

from the DREDGING DATA table.
Code:

if exists (select * from sysobjects where uid = user_id() and
name = 'SELECT_PROCESSED_DREDGING_DATA’)
drop proc SELECT_PROCESSED_DREDGING_DATA
go
create proc SELECT_PROCESSED_DREDGING_DATA with recompile as
select CONTRACT_ID,
PROJECT,
DREDGE,
convert(char(6), DATE_TIME, 12),
convert(float, 60 * 60 * datepart(hh, DATE_TIME) +
60 * datepart(mi,DATE_TIME) +
datepart(ss, DATE_TIME) +
.001 * datepart(ms,DATE_TIME)),
VESSEL_X,
VESSEL_X_STATUS,
- VESSEL_Y,
VESSEL_Y_STATUS,

Appendix A Stored Procedures

VESSEL_DRAFT_FORWARD,
VESSEL_DRAFT_FORWARD_STATUS,
VESSEL_DRAFT_AFT, ’
VESSEL_DRAFT_AFT_STATUS,
VESSEL_SPEED,
VESSEL_SPEED_STATUS,
VESSEL_HEADING,
VESSEL_HEADING_STATUS,
VESSEL_COURSE,
VESSEL_COURSE_STATUS,
DRAGHEAD_DEPTH_PORT,
DRAGHEAD_DEPTH_PORT_STATUS,
DRAGHEAD_DEPTH_STBD,
DRAGHEAD_DEPTH_STBD_STATUS,
HOPPER_LEVEL_FORWARD,
HOPPER_LEVEL_FORWARD_STATUS,
HOPPER_LEVEL_AFT,
HOPPER_LEVEL_AFT_STATUS,
HOPPER_VOLUME,
HOPPER_VOLUME_STATUS,
HOPPER_ULLAGE,
HOPPER_ULLAGE_STATUS,
WATER_DEPTH,
WATER_DEPTH_STATUS,
TIDE,
TIDE_STATUS,
HOPPER_DOOR_OPEN,
PUMP_ON_PORT,
PUMP_ON_STBD,
PUMP_MATERIAL_PORT,
PUMP_MATERIAL_STBD,
PUMP_OUT_ON,
LOAD_NO,
STATE,
TDM
from DREDGING_DATA
where DATE_TIME =
(select max(DATE_TIME)
from DREDGING_DATA
where STATE is not null)
go

SELECT_PROJECT_DISTINCT
Purpose: Retrieve a unique project record having the specified CON-

TRACT_ID and PROJECT _NAME from the PROJECT table.

Use a Unix join function with the DISTRICT Table to obtain
the District name.
Code:

if exists (select * from sysobjects where vid = user_id() and
name = 'SELECT_PROJECT_DISTINCT’)
drop proc SELECT_PROJECT_DISTINCT
go
create proc SELECT_PROJECT_DISTINCT
(@CONTRACT_ID CONTRACT_IDENTIFIER,
@NAME PROJECT_NAME) as
select DISTRICT.NAME, THE_TYPE, CONTRACTOR,
convert (char(6) , START_DATE , 12),
convert (char(6) , FINISH_DATE , 12)
from PROJECT, DISTRICT
where CONTRACT_ID = @CONTRACT_ID
and PROJECT.NAME = @NAME

Appendix A Stored Procedures

A11

and DISTRICT.ABBREVIATION = PROJECT.DISTRICT
go

SELECT_PROJ_SUMMARY_DISTINCT

Purpose: Retrieve a unique project summary record having the specified
CONTRACT ID, PROJECT NAME and DREDGE_NAME
from the PROJECT_SUMMARY table.

Code:

if exists (select * from sysobjects where uid = user_id() and
name = 'SELECT_PROJ_SUMMARY_DISTINCT’)
drop proc SELECT_PROJ_SUMMARY_DISTINCT
go
create proc SELECT_PROJ_SUMMARY_DISTINCT
(@CONTRACT_ID CONTRACT_IDENTIFIER,
@PROJECT PROJECT _NAME,
@DREDGE DREDGE_NAME) as
select OPENING_DATE=convert(char(6), OPENING_DATE, 12),
CLOSING_DATE=convert(char(6), CLOSING_DATE, 12),
PUMPING_TIME, TURNING_TIME, SAILING_FULL_TIME, DUMPING_TIME,
SAILING_EMPTY_TIME, NON_EFFECTIVE_TIME, LOST_TIME,
TO_BE_DEFINED_TIME, FUEL,__AND_SUPPLIES_TIME, WHARF_OR_ANCHORAGE_TIME,
OPPOSING_NATURAL_ELEMENTS_TIME, TRAFFIC_AND_BRIDGES_TIME,
MINOR_OPERATING_REPAIRS_TIME, TRANSFER_BETWEEN_WORKS_TIME,
LAY_TIME, FIRE_AND_BOAT_DRILLS_TIME, MISCELLANEOUS_TIME,
MAJOR_REPAIRS_TIME, CESSATION_TIME, COLLISIONS_TIME,
ESTIMATED_COST, JOB_TO_DATE_COST, COST_PER_MINUTE,
TONS_RETAINED
from PROJECT_SUMMARY

where CONTRACT_ID = @CONTRACT_ID
and PROJECT = @PROJECT

and DREDGE = @DREDGE

go

SELECT_STATION_DISTINCT

Purpose: Retrieve a unique station (dredging area) record having the
specified AREA_NAME from the STATION table.

Code:

if exists (select * from sysobjects where uid = user_id() and
name = "SELECT_STATION_DISTINCT")
drop proc SELECT_STATION_DISTINCT

go

create proc SELECT_STATION_DISTINCT (@NAME AREA_NAME) as

select BOUNDARY_01_X, BOUNDARY_01_Y, BOUNDARY_02_X, BOUNDARY_02_Y,
BOUNDARY_03_X, BOUNDARY_03_Y, BOUNDARY_04_X, BOUNDARY_04_Y,
BOUNDARY_05_X, BOUNDARY_05_Y, BOUNDARY_06_X, BOUNDARY_06_Y,
BOUNDARY_07_X, BOUNDARY_07_Y, BOUNDARY_08_X, BOUNDARY_08_Y,
BOUNDARY_09_X, BOUNDARY_09_Y, BOUNDARY_10_X, BOUNDARY_10_Y

from STATION

where NAME = @NAME

go

SELECT_UNPROC_DREDGING_DATA

Purpose: Retrieve the record having the earliest dateltime that has not
been processed (been assigned a state) by the RT Kernel
program from the DREDGING DATA table.

Code:

if exists (select * from sysobjects where uid = user_id() and

Al2 Appendix A Stored Procedures

name = "SELECT_UNPROC_DREDGING_DATA’)
drop proc SELECT_UNPROC_DREDGING_DATA

. go

create proc SELECT_UNPROC_DREDGING_DATA with recompile as
select CONTRACT_ID,
PROIJECT,
DREDGE,
convert(char(6), DATE_TIME, 12),
convert(float, 60 * 60 * datepart(hh, DATE_TIME) +
60 * datepart(mi,DATE_TIME) +
datepant(ss, DATE_TIME) +
.001 * datepart(ms,DATE_TIME)),
VESSEL_X,
VESSEL_X_STATUS,
VESSEL_Y,
VESSEL_Y_STATUS,
VESSEL_DRAFT FORWARD,
VESSEL_DRAFT_FORWARD_STATUS,
VESSEL_DRAFT_AFT,
VESSEL_DRAFT_AFT_STATUS,
VESSEL_SPEED,
VESSEL_SPEED_STATUS,
VESSEL_HEADING,
VESSEL_HEADING_STATUS,
VESSEL_COURSE,
VESSEL_COURSE_STATUS,
DRAGHEAD_DEPTH_PORT,
DRAGHEAD_DEPTH_PORT_STATUS,
DRAGHEAD_DEPTH_STBD,
DRAGHEAD_DEPTH_STBD_STATUS,
HOPPER_LEVEL_FORWARD,
HOPPER_LEVEL_FORWARD_STATUS,
HOPPER_LEVEL_AFT,
HOPPER_LEVEL_AFT_STATUS,
HOPPER_VOLUME,
HOPPER_VOLUME_STATUS,
HOPPER_ULLAGE,
HOPPER_ULLAGE_STATUS,
WATER_DEPTH,
WATER_DEPTH_STATUS,
TIDE,
TIDE_STATUS,
HOPPER_DOOR_OPEN,
PUMP_ON_PORT,
PUMP_ON_STBD,
PUMP_MATERIAL_PORT,
PUMP_MATERIAL_STBD,
PUMP_OUT_ON,
LOAD_NO,
STATE,
TDM .
from DREDGING_DATA
where DATE_TIME =
(select min(DATE_TIME)
from DREDGING_DATA
where STATE is null)

go

UPDATE_DOWNTIME .
Purpose: Update a downtime event in the DOWNTIME table with a
cause and comment.

Appendix A Stored Procedures

A13

Al14

Code:
if exists (select * from sysobjects where uid = user_id() and
name = "UPDATE_DOWNTIME’)
drop proc UPDATE_DOWNTIME
go
create proc UPDATE_DOWNTIME
(@CONTRACT_ID CONTRACT_IDENTIFIER,
@PROJECT PROJECT_NAME,
@DREDGE DREDGE_NAME,
@START_DATE_TIME datetime,
@CAUSE DOWNTIME_CAUSE,
@COMMENT FREE_FORM_TEXT) with recompile as
update DOWNTIME
set CAUSE =@CAUSE,
COMMENT = @COMMENT
where CONTRACT_ID = @CONTRACT_ID
and PROJECT = @PROJECT
and DREDGE = @DREDGE
and START_DATE_TIME = @START_DATE_TIME
go

UPDATE_DREDGING DATA

Purpose: Update a dredging data record in the DREDGING _DATA
table with a load number, state and TDM.

Code:
if exists (select * from sysobjects where uid = user_id() and
name = '"UPDATE_DREDGING_DATA’)
drop proc UPDATE_DREDGING_DATA
go
create proc UPDATE_DREDGING_DATA
(@CONTRACT_ID CONTRACT_IDENTIFIER,
@PROJECT PROJECT_NAME,
@DREDGE DREDGE_NAME,
@DATE_TIME datetime,
@LOAD_NO LOAD_NUMBER,
@STATE DREDGE_STATE,
@TDM LONG_TONS_TYPE) with recompile as
update DREDGING_DATA
set LOAD_NO = @LOAD_NO,
STATE = @STATE,
™M =@TDM
where CONTRACT_ID = @CONTRACT_ID
and PROJECT = @PROIJECT
and DREDGE = @DREDGE
and DATE_TIME = @DATE_TIME
go

UPDATE_PROJECT _SUMMARY

Purpose: Update a project summary record in the
PROJECT SUMMARY table.

Code:

if exists (select * from sysobjects where uid = user_id() and
name = "UPDATE_PROJECT_SUMMARY")
drop proc UPDATE_PROJECT_SUMMARY
go
create proc UPDATE_PROJECT_SUMMARY

(@CONTRACT_ID CONTRACT_IDENTIFIER,
@PROJECT PROJECT_NAME,
@DREDGE DREDGE_NAME,

Appendix A

Stored Procedures

set

@CLOSING_DATE datetime,
@PUMPING_TIME MINUTES_TYPE,
@TURNING_TIME MINUTES_TYPE,
@SAILING_FULL_TIME MINUTES_TYPE,
@DUMPING_TIME MINUTES_TYPE,
@SAILING_EMPTY_TIME MINUTES_TYPE,
@NON_EFFECTIVE_TIME MINUTES_TYPE,
@LOST_TIME MINUTES_TYPE,
@TO_BE_DEFINED_TIME MINUTES_TYPE,
@FUEL_AND_SUPPLIES_TIME MINUTES_TYPE,

@WHARF_OR_ANCHORAGE_TIME MINUTES_TYPE,
@OPPOSING_NATURAL_ELEMENT_TIME MINUTES_TYPE,
@TRAFFIC_AND_BRIDGES_TIME MINUTES_TYPE,
@MINOR_OPERATING_REPAIRS_TIME MINUTES_TYPE,
@TRANSFER_BETWEEN_WORKS_TIME = MINUTES_TYPE,

@LAY_TIME MINUTES_TYPE,

@FIRE_AND_BOAT _DRILLS_TIME MINUTES_TYPE,

@MISCELLANEOUS_TIME MINUTES_TYPE,

@MAJOR_REPAIRS_TIME MINUTES_TYPE,

@CESSATION_TIME MINUTES_TYPE,

@COLLISIONS_TIME MINUTES_TYPE,

@ESTIMATED_COST money,

@JOB_TO_DATE_COST money,

@COST_PER_MINUTE money,

@TONS_RETAINED LONG_TONS_TYPE) as

update PROJECT_SUMMARY

CLOSING_DATE = @CLOSING_DATE,
PUMPING_TIME = @PUMPING_TIME,
TURNING_TIME = @TURNING_TIME,
SAILING_FULL_TIME = @SAILING_FULL_TIME,
DUMPING_TIME = @DUMPING_TIME,
SAILING_EMPTY_TIME = @SAILING_EMPTY_TIME,
NON_EFFECTIVE_TIME = @NON_EFFECTIVE_TIME,
LOST_TIME = @LOST_TIME,
TO_BE_DEFINED_TIME = @TO_BE_DEFINED_TIME,
FUEL_AND_SUPPLIES_TIME = @FUEL_AND_SUPPLIES_TIME,
WHARF_OR_ANCHORAGE_TIME = @WHARF_OR_ANCHORAGE_TIME,
OPPOSING_NATURAL_ELEMENTS_TIME = @OPPOSING_NATURAL_ELEMENT_TIME,
TRAFFIC_AND_BRIDGES_TIME = @TRAFFIC_AND_BRIDGES_TIME,

MINOR_OPERATING_REPAIRS_TIME = @MINOR_OPERATING_REPAIRS_TIME,
TRANSFER_BETWEEN_WORKS_TIME = @TRANSFER_BETWEEN_WORKS_TIME,

LAY_TIME = @LAY_TIME,

. FIRE_AND_BOAT_DRILLS_TIME = @FIRE_AND_BOAT_DRILLS_TIME,
MISCELLANEOUS_TIME = @MISCELLANEOUS_TIME,
MAJOR_REPAIRS_TIME = @MAJOR_REPAIRS_TIME,
CESSATION_TIME = @CESSATION_TIME,
COLLISIONS_TIME = @COLLISIONS_TIME,

- ESTIMATED_COST = @ESTIMATED_COST,
JOB_TO_DATE_COST = @JOB_TO_DATE_COST,
COST_PER_MINUTE = @COST_PER_MINUTE,
TONS_RETAINED = @TONS_RETAINED

where CONTRACT_ID = @CONTRACT_ID

and PROJECT = @PROJECT

and DREDGE = @DREDGE

go

Appendix A Stored Procedures

A15

@JOB_TO_DATE_COST money,
@COST_PER_MINUTE money,
@TONS_RETAINED LONG_TONS_TYPE) as
update PROJECT_SUMMARY
set CLOSING_DATE = @CLOSING_DATE,
PUMPING_TIME = @PUMPING_TIME,
TURNING_TIME = @TURNING_TIME,
SAILING_FULL_TIME = @SAILING_FULL_TIME,
DUMPING_TIME = @DUMPING_TIME,
SAILING_EMPTY_TIME = @SAILING_EMPTY_TIME,
NON_EFFECTIVE_TIME = @NON_EFFECTIVE_TIME,
LOST_TIME = @LOST_TIME,
TO_BE_DEFINED_TIME = @TO_BE_DEFINED_TIME,
FUEL_AND_SUPPLIES_TIME = @FUEL_AND_SUPPLIES_TIME,
WHARF_OR_ANCHORAGE_TIME = @WHARF_OR_ANCHORAGE_TIME,
OPPOSING_NATURAL_ELEMENTS_TIME = @OPPOSING_NATURAL_ELEMENT _TIME,
TRAFFIC_AND_BRIDGES_TIME = @TRAFFIC_AND_BRIDGES_TIME,

MINOR_OPERATING_REPAIRS_TIME = @MINOR_OPERATING_REPAIRS_TIME,
TRANSFER_BETWEEN_WORKS_TIME = @TRANSFER_BETWEEN_WORKS_TIME,

LAY_TIME = @LAY_TIME,
FIRE_AND_BOAT_DRILLS_TIME = @FIRE_AND_BOAT_DRILLS_TIME,
MISCELLANEOUS_TIME = @MISCELLANEOUS_TIME,
MAJOR_REPAIRS_TIME = @MAJOR_REPAIRS_TIME,
CESSATION_TIME = @CESSATION_TIME,
COLLISIONS_TIME = @COLLISIONS_TIME,
ESTIMATED_COST = @ESTIMATED_COST,
JOB_TO_DATE_COST = @JOB_TO_DATE_COST,
COST_PER_MINUTE = @COST_PER_MINUTE,
TONS_RETAINED = @TONS_RETAINED

where CONTRACT_ID = @CONTRACT_ID

and PROJECT = @PROJECT

and DREDGE = @DREDGE

go

A16 Appendix A Stored Procedures

Appendix B
Backup and Archive Script

ARCHIVE FUNCTION SCRIPTING
#!csh
#
dosis_archive - write archive files to $DOSIS_ARCHIVE, remove archived data
from the database
#
unset noclobber
#
make sure all required environment variables are set correctly
#
if ($7DOSIS_COMMAND_DIR == 0) then
echo "Environment variable DOSIS_COMMAND_DIR not set; please set and rerun"
set DOSIS_COMMAND_DIR = dummy
exit(1)
else if (-d $DOSIS_COMMAND_DIR == 0) then
echo "Environment variable DOSIS_COMMAND_DIR does not designate a directory”
echo” Please set and rerun"
exit(1)
endif
if (-e $DOSIS_COMMAND_DIR/check_vars == 0) then
echo "$DOSIS_COMMAND_DIR/check_vars script does not exist"
echo" Please fix and rerun”
exit(1)
endif
source $DOSIS_COMMAND_DIR/check_vars
if ($status 1= 0) exit(1)
#
make sure an archive hasn’t already been taken today
#
if (-e $DOSIS_ARCHIVE/$date$ ArchiveTables[2}.ad == 1) then
echo "An archive has already been taken today. Please wait for tomorrow”
exit(1)
endif
#
dump the transaction log before starting the archive
#
if (-e $DOSIS_COMMAND_DIR/dosis_dumptran == 0 Il \
-e $DOSIS_COMMAND_DIR/dosis_dumpdb == 0) then
echo "Can’t find $DOSIS_COMMAND_DIR/dosis_dumptran and/or dosis_dumpdb scripts”
echo” Please fix and rerun”
exit(1)
endif

Appendix B Backup and Archive Script

B2

source $DOSIS_COMMAND_DIR/dosis_dumptran

if ($status != 0) exit(1)

#

set options to allow us to select into, etc.

#

isql -Usa -P§SA_PASSWORD <<EXIT >DOSIStemp

sp_dboption DOSIS, selec, true

go

sp_dboption DOSIS, trunc, true

go

use DOSIS

go

checkpoint

go

EXIT

diff DOSIStemp - >/dev/null <<EXIT »

Run the CHECKPOINT command in the database that was changed.
(retum status = 0)

Run the CHECKPOINT command in the database that was changed.
(retum status = 0)

EXIT
if ($status != 0) then
echo "Unable to set database options: please correct below errors and rerun”
cat DOSIStemp
csh $DOSIS_COMMAND_DIR/dosis_dumpdb
exit(1)
endif
#
bulk copy the required tables
#

isql -Usa -P§SA_PASSWORD <<EXIT >DOSIStemp

use DOSIS

go

select "marker”, max(LOAD_NO)

from LOAD_TABLE

go

EXIT

set return = ‘grep marker DOSIStemp*

if ($#retum == 0) then
echo "Can’t read max load number; please correct below errors and rerun”
cat DOSIStemp
csh $DOSIS_COMMAND_DIR/dosis_dumpdb
exit(1)

endif

set MaxLoadNo = $retum(2]

if ($MaxLoadNo == "NULL") then
echo "No loads have been completed; please rerun archive request later”
csh $DOSIS_COMMAND_DIR/dosis_dumpdb
exit(l)

endif

set WorkArchiveTables = ($ArchiveTables)

while ($#Work ArchiveTables !=0)

isql -Usa -P$SA_PASSWORD <<EXIT >DOSIStemp

use DOSIS

go

if exists (select * from sysobjects where name = "ArchiveTemp")
drop table ArchiveTemp

g0

select *

into ArchiveTemp

from $WorkArchiveTables[1]

Appendix B

Backup and Archive Script

where LOAD_NO <= $MaxLoadNo
go
declare @OriginalCount int, @CopiedCount int
select @OriginalCount = count(*)
from $WorkArchiveTables[1]
where LOAD_NO <= $MaxLoadNo
select @CopiedCount = count(*)
from ArchiveTemp
if (@OriginalCount = @CopiedCount)
select "SUCCESS", @CopiedCount
go
EXIT
set return = ‘grep SUCCESS DOSIStemp*
if ($#return = 0) then
echo "Could not copy table for bulk copy”
echo” Please correct below errors and rerun”
cat DOSIStemp
m $DOSIS_ARCHIVE/$date*.ad
csh $DOSIS_COMMAND_DIR/dosis_dumpdb
exit(1)
endif
set RowCount = $return|2]
bep DOSIS.dbo.ArchiveTemp out $DOSIS_ARCHIVE/$date$Work ArchiveTables[2].ad \
-n -Usa -P$SA_PASSWORD >DOSIStemp
set retum = ‘grep "rows copied\" DOSIStemp*
if ($#retum == 0) then
echo "Bulk copy out failed - please correct below errors and rerun”
cat DOSIStemp
m $DOSIS_ARCHIVE/$date*.ad
csh $DOSIS_COMMAND_DIR/dosis_dumpdb
exit(1)
endif
if ($return[1] != $RowCount) then
echo "Wrong row count on bulk copy out - please check below errors and rerun”
cat DOSIStemp
m $DOSIS_ARCHIVE/$date*.ad
csh $DOSIS_COMMAND_DIR/dosis_dumpdb
exit(1)
endif
shift WorkArchiveTables
shift WorkArchiveTables
shift WorkArchiveTables
end
#
delete the archived data
.
set WorkArchiveTables = ($ArchiveTables)
while ($#WorkArchiveTables != 0)
isql -Usa -P$SA_PASSWORD <<EXIT >DOSIStemp
use DOSIS
go
delete $WorkArchiveTables[1]
where LOAD_NO <= $MaxLoadNo
go
EXIT
set return = ‘grep affected DOSIStemp*
set returnl = ‘grep Msg DOSIStemp*
if ($#return == 0 |l $#returnl != 0) then
echo "kkkEx DELETE FAILED FOR ARCHIVED DATA ookl
echo "*¥**¢ YOUR DOSIS DATABASE MAY NOW BE INCONSISTENT #kxk
echo "*¥+¥* WE STRONGLY RECOMMEND RUNNING dosis_restore NOW *kkkx"
echo "kkkk see below errors Aokt

cat DOSIStemp

Appendix B

Backup and Archive Script

B3

B4

endif

shift WorkArchiveTables

shift WorkArchiveTables

shift WorkArchiveTables

end

#

Done - report success, dump the database

#

echo "Archive files for $date have been created"
csh $DOSIS_COMMAND_DIR/dosis_dumpdb
exit(0)

CHECKING FUNCTION FOR ARCHIVING SCRIPTING
#lcsh
#
check_vars - make sure all environment variables are set for DOSIS scripts
#
tables to archive
#
set ArchiveTables = (\
DREDGING_DATA DDA DATE_TIME \

STATE STA START_DATE_TIME\
LOAD_TABLE LDT DATE\
DOWNTIME DWN START_DATE_TIME \

LOAD_DISPOSAL_AREA LDA DISPOSAL_START _DATE_TIME\
LOAD_STATION LST STATION_START_DATE_TIME)

#

make sure all required environment variables are set correctly

#

set DiskDumpDevice = 2 -

unset noclobber

set error = 0

if ($?SA_PASSWORD == 0) then
echo "Environment variable SA_PASSWORD not set; please set and rerun"
set error = 1

else

isql -Usa -PSSA_PASSWORD <<EXIT >DOSIStemp

select 1234

g0

EXIT

set retum="grep 1234 DOSIStemp*

if ($return != 1234) then
echo "Environment variable SA_PASSWORD is not correct sa password"
echo” Please set and rerun”
set error = 1

endif

endif

if ($7DOSIS_ARCHIVE == 0) then
echo "Environment variable DOSIS_ARCHIVE not set; please set and rerun”
set DOSIS_ARCHIVE = dummy
set error = 1

else if (-d $DOSIS_ARCHIVE == 0) then
echo "Environment variable DOSIS_ARCHIVE does not designate a directory"
echo” Please set and rerun"
set error = 1

endif

if ($?DOSIS_BACKUP == 0) then
echo "Environment variable DOSIS_BACKUP not set; please set and rerun”
set DOSIS_BACKUP = dummy
set error = 1

else if (-d $DOSIS_BACKUP == 0) then

Appendix B Backup and Archive Script

echo "Environment variable DOSIS_BACKUP does not designate a directory"
echo” Please set and rerun”
set error = 1
endif
if ($7DOSIS_COMMAND_DIR == 0) then
echo "Environment variable DOSIS_COMMAND_DIR not set; please set and rerun”
set DOSIS_COMMAND_DIR = dummy
set error = 1
else if (-d $DOSIS_COMMAND_DIR == 0) then
echo "Environment variable DOSIS_COMMAND_DIR does not designate a directory™
echo” Please set and rerun”
set error = 1
endif
if ($?7DOSIS_DUMP_DEVICE == 0) then
echo "Environment variable DOSIS_DUMP_DEVICE not set; please set and rerun”
set error = 1
else
isql -Usa -P$§SA_PASSWORD -w256 <<EXIT >DOSIStemp
select "marker”, cntrltype, phyname
from sysdevices
where name = "$DOSIS_DUMP_DEVICE"
go
EXIT
set return = ‘grep marker DOSIStemp*
if ($#retum == 0) then
echo "Environment variable DOSIS_DUMP_DEVICE not set to a valid dump device"
echo™ Please set and rerun”
setretum =(222)
set error = 1
endif
if ($return{2] != $DiskDumpDevice) then
echo "Environment variable DOSIS_DUMP_DEVICE not set to a valid dump device"
echo” Please set and rerun”
set error = 1
endif
set DOSIS_DUMP_FILE = $retum([3]
endif
if ($error == 1) exit(l)
#
establish date for file names and archive time
#
set date="'date +'%y%m%d"*
if ($date < *500000°) then
set date = 20${date}
else)
set date = 19${date}
endif
exit(0)

DELETE ARCHIVED FILES FUNCTION SCRIPTING
#lcsh
#
dosis_clean [yyyymmdd] - delete archive files from yyyymmdd (if specified),
else oldest archive set
#
unset noclobber
#
make sure all required environment variables are set correctly
#
if ($?DOSIS_COMMAND_DIR == 0) then
echo "Environment variable DOSIS_COMMAND_DIR not set; please set and rerun"

Appendix B Backup and Archive Script

B5

B6

set DOSIS_COMMAND_DIR = dummy
exit(l)
else if (-d $DOSIS_COMMAND_DIR == 0) then
echo "Environment variable DOSIS_COMMAND_DIR does not designate a directory”
echo" Please set and rerun”
exit(l)
endif
if (- $DOSIS_COMMAND_DIR/check_vars == 0) then
echo "$DOSIS_COMMAND_DIR/check_vars script does not exist"
echo” Please fix and rerun”
exit(1)
endif
source $DOSIS_COMMAND_DIR/check_vars
if ($status != 0) exit(1)
#
get date either from (a) our argument or (b) oldest archive file
#
if ($#argv == 0) then
set Date = ($DOSIS_COMMAND_DIR/check*_vars $DOSIS_ARCHIVE/*.ad)
shift Date
if ($#Date == 0) then
echo "No archive files are present. No need to clean them out”

exit(1)

endif

awk ’{ print substr($1,1,8) }’ <<EXIT >DOSIStemp
$Date[1]:t
EXIT

set Date = ‘cat DOSIStemp*
else

set Date = Sargv[1]
endif
#
make sure at least one archive files exists
#
set WorkArchiveTables = ($ArchiveTables)
unset exists

while ($#WorkArchiveTables != 0)
set filename = $DOSIS_ARCHIVE/$Date$Work ArchiveTables[2].ad
if (-e $filename) then
set exists = 1
m $filename
endif
shift WorkArchiveTables
shift WorkArchiveTables
shift WorkArchiveTables
end
if ($2exists == 0) then
echo "No archive files found for that date. Please rerun with correct date"
exit(1)
endif
echo "Archive files for $Date deleted”
exit(0)

DUMP DOSIS DATABASE FUNCTION SCRIPTING
#lcsh

#

dosis_dumpdb - dump DOSIS database, also delete all but latest database and
transaction log dumps

#

unset noclobber

#

Appendix B Backup and Archive Script

make sure all required environment variables are set correctly
#
if ($7DOSIS_COMMAND_DIR == 0) then
echo "Environment variable DOSIS_COMMAND_DIR not set; please set and rerun"
set DOSIS_COMMAND_DIR = dummy
exit(1)
else if (-d $DOSIS_COMMAND_DIR == 0) then
echo "Environment variable DOSIS_COMMAND_DIR does not designate a directory"
echo"” Please set and rerun”
exit(1)
endif
if (-e $DOSIS_COMMAND_DIR/check_vars == 0) then
echo "$DOSIS_COMMAND_DIR/check_vars script does not exist”
echo”™ Please fix and rerun"
exit(1)
endif
source $DOSIS_COMMAND_DIR/check_vars
if ($status != 0) exit(1)
#
delete old backups
#
set DatabaseDumps = ($DOSIS_COMMAND_DIR/check* _vars $DOSIS_BACKUP/*.dbd)
shift DatabaseDumps
while ($#DatabaseDumps > 1)
set LogDumps = ($DOSIS_COMMAND_DIR/check*_vars $DOSIS_BACKUP/*.tld)
shift LogDumps
while ($#LogDumps > 0)
sort <<EXIT >DOSIStemp
$LogDumps[1]:r
$DatabaseDumps[2]:r
EXIT
set retumn = ‘cat DOSIStemp*
if ($return[1] == $LogDumps[1]:r) then
m $LogDumps[1]
else
break
endif
shift LogDumps
end
m $DatabaseDumps[1]
shift DatabaseDumps
end
#
find the suffix for the database dump
#
if (-« SDOSIS_BACKUP/${date}z.dbd) then
echo "Too many dumps taken today. Please check $DOSIS_BACKUP"
exit(1)
endif
set prev_suffix = z
foreach suffix (yxwvutsrqponmlkjihgfedcba)
if (- $DOSIS_BACKUP/$date$suffix.dbd) then
set suffix = $prev_suffix
break
endif
if (-e $DOSIS_BACKUP/$date$suffix.tld) break
set prev_suffix = $suffix
end
#
set options and truncate the transaction log in preparation for dumping
#
isql -Usa -P$SA_PASSWORD <<EXIT >DOSIStemp
sp_dboption DOSIS, selec, false

Appendix B Backup and Archive Script

B7

B8

8o :

sp_dboption DOSIS, trunc, false

g0

use DOSIS

go

checkpoint

g0

dump transaction DOSIS with truncate_only

g0

EXIT

diff DOSIStemp - >/dev/null <<EXIT

Run the CHECKPOINT command in the database that was changed.
(return status = 0)

Run the CHECKPOINT command in the database that was changed.
(retumn status = 0)

EXIT

if ($status 1= 0) then
echo "Unable to set database options and truncate transaction log"
echo” Please correct below errors and rerun”
cat DOSIStemp
exit(1)

endif

#

dump the database

#

if (-e $DOSIS_DUMP_FILE) m $DOSIS_DUMP_FILE

isql -Usa -P$SA_PASSWORD <<EXIT >DOSIStemp

dump database DOSIS to $DOSIS_DUMP_DEVICE

go

EXIT

set return = ‘cat DOSIStemp*

if ($#return != 0 |l -e $DOSIS_DUMP_FILE == 0) then
echo "Database dump failed -- please correct below errors and rerun”
cat DOSIStemp
exit(1)

endif

set filename = $DOSIS_BACKUP/$date$suffix.dbd

mv $DOSIS_DUMP_FILE $filename

if (-e $filename != 1) then
echo "Failed to copy database dump -- please correct and rerun”
exit(1)

endif

#

success message

#

echo "DOSIS database dumped to $filename”

exit(0)

DUMP DOSIS DATABASE TRANSACTION LOG FUNCTION

SCRIPTING

#lcsh

#

dosis_dumptran - dump DOSIS database transaction log

#

unset noclobber

#

make sure all required environment variables are set correctly
#

if ($?DOSIS_COMMAND_DIR == 0) then

Appendix B Backup and Archive Script

echo "Environment variable DOSIS_COMMAND_DIR not set; please set and rerun"
set DOSIS_COMMAND_DIR = dummy
exit(1)
else if (-d $DOSIS_COMMAND_DIR == 0) then
echo "Environment variable DOSIS_COMMAND_DIR does not designate a directory”
echo” Please set and rerun”
exit(1)
endif
if (-« $SDOSIS_COMMAND_DIR/check_vars == 0) then
echo "$DOSIS_COMMAND_DIR/check_vars script does not exist”
echo” Please fix and rerun”
exit(1)
endif
source $DOSIS_COMMAND_DIR/check_vars
if ($status != 0) exit(1)
#
find the suffix for the transaction log
#
if (-e SDOSIS_BACKUP/${date }z.dbd Il -e $DOSIS_BACKUP/${date}ztld) then
echo "Too many dumps taken today. Please check $DOSIS_BACKUP"
exit(1)
endif
set prev_suffix = z
foreach suffix (yxwvutsrqponmlkjihgfedcba)
if (-e $DOSIS_BACKUP/$date$suffix.dbd Il \
-¢ $DOSIS_BACKUP/$date$suffix.td) then
set suffix = $prev_suffix
break
endif
set prev_suffix = $suffix
end
#
dump the transaction log
#
if (-e $DOSIS_DUMP_FILE == 1) mm $DOSIS_DUMP_FILE
isql -Usa -P$SA_PASSWORD <<EXIT >DOSIStemp
dump transaction DOSIS to $DOSIS_DUMP_DEVICE
go
EXIT
set return = ‘cat DOSIStemp*
if ($#retum != 0 Il -e $DOSIS_DUMP_FILE == 0) then
echo "Transaction log dump failed -- please correct below errors and rerun”
cat DOSIStemp
exit(1)
endif
set filename = $DOSIS_BACKUP/$date$suffix.tld
mv $DOSIS_DUMP_FILE $filename
if (-e $filename !=1) then
echo "Failed to copy transaction log dump -- please correct and rerun”
exit(1)
endif
#
report success
#
echo "DOSIS transaction log dumped to $filename”
exit(0)

LOAD ARCHIVED DATA FUNCTION SCRIPTING
#lcsh

#

dosis_load [DEV] - load archive from /dev/DEV (if specified),

Appendix B Backup and Archive Script

B9

else from /dev/$DOSIS_TAPE
#
unset noclobber
#
make sure all required environment variables are set correctly
#
if ($7DOSIS_COMMAND_DIR == 0) then
echo "Environment variable DOSIS_COMMAND_DIR not set; please set and rerun”
set DOSIS_COMMAND_DIR = dummy
exit(1)
else if (-d $DOSIS_COMMAND_DIR == 0) then
echo "Environment variable DOSIS_COMMAND_DIR does not designate a directory”
echo” Please set and rerun"
exit(1)
endif
if (- $DOSIS_COMMAND_DIR/check_vars == 0) then
echo "$DOSIS_COMMAND_DIR/check_vars script does not exist"
echo” Please fix and rerun"
exit(1)
endif
source $DOSIS_COMMAND_DIR/check_vars
if ($status != 0) exit(1)
#
use argument for tape device if specified, else $DOSIS_TAPE
#
if ($#argv == 0) then
if ($?DOSIS_TAPE == 0) then
echo "You must specify a tape drive, or set DOSIS_TAPE environment var."

echo” Please correct and rerun”
exit(1)
endif
set Tape = /dev/$DOSIS_TAPE
else
set Tape = /dev/Sargv[1]
endif
#
make sure Tape device is valid
#

" if (-e $Tape == 0) then
echo "Tape device $Tape does not exist. Please check and rerun”
exit(1)
endif
#
load the archived files onto disk
#
(cd SDOSIS_ARCHIVE ; tar xvf $Tape >&DOSIStemp)
if ($status != 0) then
echo "Cannot read archive tape; please correct below errors and rerun”
cat DOSIStemp
exit(1)
endif
#
get the file names; make sure we have the right number
#
set filenames = ‘awk /Ax/ { print substr($2,1,14) }* DOSIStemp*
if (3 * $#filenames != $#ArchiveTables) then
echo "Wrong number of files read from tape - please correct and rerun”
foreach file ($filenames)
m $DOSIS_ARCHIVE/$file
end
exit(1)
endif

B10 Appendix B Backup and Archive Script

#
get the date from the file names
#
set Date = ‘awk ’/Ax/ { print substr($2,1,8) }’ DOSIStemp*
while ($#Date > 1)
if ($Date[1] != $Date[2]) then
echo "Files read from tape have different dates. Please correct and rerun”
foreach file ($filenames)
m $DOSIS_ARCHIVE/$file
end
exit(1)
endif
shift Date
end
#
verify that all required files have been read in
#
set WorkArchiveTables = ($ArchiveTables)
unset missing
while ($#WorkArchiveTables !=0)
set filename = $Date$Work ArchiveTables[2].ad
set return = ‘grep $filename DOSIStemp*
if ($#return = 0) then
echo "File $filename missing from tape"
set missing = 1
endif
shift WorkArchiveTables
shift WorkArchiveTables
shift WorkArchiveTables .
end
if ($?missing) then
echo "Please correct above errors and rerun”
foreach file ($filenames)
rm $DOSIS_ARCHIVE/$file
end
exit(1)
endif
#
dump the transaction log before starting the load (since it
involves bep)
#
if (-¢ $DOSIS_COMMAND_DIR/dosis_dumptran == 0 I\
-e $DOSIS_COMMAND_DIR/dosis_dumpdb == 0) then
echo "Can’t find $DOSIS_COMMAND_DIR/dosis_dumptran and/or dosis_dumpdb scripts"
echo” Please fix and rerun"
foreach file ($filenames)
m $DOSIS_ARCHIVE/$file
end
exit(1)
endif
source $DOSIS_COMMAND_DIR/dosis_dumptran
if ($status 1= 0) then
foreach file ($filenames)
m $DOSIS_ARCHIVE/$file
end
exit(1)
endif
#
set options to allow us to bulk copy in
#
isql -Usa -P$SA_PASSWORD <<EXIT >DOSIStemp
sp_dboption DOSIS, selec, true

go

Appendix B Backup and Archive Script

B11

sp_dboption DOSIS, trunc, true

go

use DOSIS

go

checkpoint

go

EXIT

diff DOSIStemp - >/dev/null <<EXIT

Run the CHECKPOINT command in the database that was changed.
(retum status = 0)

Run the CHECKPOINT command in the database that was changed.
(retum status = 0)

EXIT
if ($status != 0) then
echo "Unable to set database options: please correct below errors and rerun”
cat DOSIStemp
foreach file ($filenames)
m $DOSIS_ARCHIVE/$file
end
csh $DOSIS_COMMAND_DIR/dosis_dumpdb
exit(l)
endif
#
create a dummy table to hold the LOAD_TABLE
#
isql -Usa -P$SA_PASSWORD <<EXIT >DOSIStemp
use DOSIS
go
if exists (select * from sysobjects where name = "ArchiveTemp")
drop table ArchiveTemp
go
select *
into ArchiveTemp
from LOAD_TABLE
where CONTRACT_ID = *This will match no IDs’
go
EXIT
diff DOSIStemp - >/dev/null <<EXIT
(0 rows affected)

EXIT
if ($status != 0) then
echo "Unable to create LOAD_TABLE temporary table for analysis”
echo" Please correct below errors and rerun”
cat DOSIStemp
foreach file ($filenames)
m $DOSIS_ARCHIVE/$file
end
csh $DOSIS_COMMAND_DIR/dosis_dumpdb
exit(1)
endif
#
bulk copy in the load table
#
bep DOSIS.dbo.ArchiveTemp in $DOSIS_ARCHIVE/${Date}LDT.ad -n -Usa\
-P$SA_PASSWORD >DOSIStemp
set return = ‘grep Msg DOSIStemp*
set retuml = ‘grep "rows copied” DOSIStemp*
if ($#retum1 == 0) set retunl = (00)
if ($#retum != 0 Il $return1[1] == 0) then

B12 Appendix B Backup and Archive Script

echo "Bulk copy in of LOAD_TABLE failed or zero rows read”
echo” Please correct below errors and rerun”
cat DOSIStemp
foreach file ($filenames)
m $DOSIS_ARCHIVE/$file
end
csh $DOSIS_COMMAND_DIR/dosis_dumpdb
exit(1)
endif
#
make sure we are not duplicating data
#
isql -Usa -P$SA_PASSWORD <<EXIT >DOSIStemp
use DOSIS
go
delete ArchiveTemp
where LOAD_NO <
(select max(LOAD_NO)
from ArchiveTemp)
go
select "marker”, count(*)
from ArchiveTemp a, LOAD_TABLE 1
where a.CONTRACT_ID = LCONTRACT_ID
and a.PROJECT =1PROJECT
and a.DREDGE = L.DREDGE
and a.LOAD_NO =LLOAD_NO
g0
EXIT
set retum = ‘grep marker DOSIStemp*
set retum1 = ‘grep Msg DOSIStemp*
if ($#retum == O Il $#returnl != 0) then
echo "Check for duplicate data being loaded from archive failed"
echo” Please correct below errors and rerun”
cat DOSIStemp
foreach file ($filenames)
rm $DOSIS_ARCHIVE/Sfile
end
csh $DOSIS_COMMAND_DIR/dosis_dumpdb
exit(1)
endif
if ($retum([2] != 0) then
echo "Duplicate data being inserted by load - please correct and rerun"
foreach file ($filenames)
rm $DOSIS_ARCHIVE/$file
end
csh $DOSIS_COMMAND_DIR/dosis_dumpdb
exit(1)
endif
#
now bulk copy the data
#
set WorkArchiveTables = ($ArchiveTables)
while ($#WorkArchiveTables =0)
bep DOSIS.dbo.$WorkArchiveTables[1] in \
$DOSIS_ARCHIVE/$Date$WorkArchiveTables[2].ad -n -Usa -P$SA_PASSWORD \
>DOSIStemp)
set retum = ‘grep "Msglfail” DOSIStemp*
set returnl = ‘grep "rows copied” DOSIStemp*
if ($#retum != 0 |l $#retum] == 0) then
echo "*¥*¥* RBULK COPY IN FAILED FOR LOADING AN ARCHIVE k4"
echo "***** YQUR DOSIS DATABASE MAY NOW BE INCONSISTENT ks
echo "**¥¥* WE STRONGLY RECOMMEND RUNNING dosis_restore NOW *#*x¥kxk

echo "¥ikkkk see below errors ok

Appendix B

Backup and Archive Script

B13

cat DOSIStemp
foreach file ($filenames)
m $DOSIS_ARCHIVE/$file
end
exit(1)
endif
shift WorkArchiveTables
shift WorkArchiveTables
shift WorkArchiveTables
end
#
Done - report success, dump the database
#
echo "Archive files for $Date have been loaded"
foreach file ($filenames)
m $DOSIS_ARCHIVE/$file
end
csh $DOSIS_COMMAND_DIR/dosis_dumpdb
exit(0)

RESTORE DOSIS DATABASE FUNCTION SCRIPTING
#lcsh
#
dosis_restore - restore latest DOSIS database and transaction log dumps
#
unset noclobber
#
make sure all required environment variables are set correctly
#
if ($?DOSIS_COMMAND_DIR == 0) then
echo "Environment variable DOSIS_COMMAND_DIR not set; please set and rerun”
set DOSIS_COMMAND_DIR = dummy
exit(1)
else if (-d $DOSIS_COMMAND_DIR == 0) then
echo "Environment variable DOSIS_COMMAND_DIR does not designate a directory”
echo" Please set and rerun"
exit(1)
endif
if (- $DOSIS_COMMAND_DIR/check_vars == 0) then
echo "$DOSIS_COMMAND_DIR/check_vars script does not exist"
echo” Please fix and rerun”
exit(1)
endif
source $DOSIS_COMMAND_DIR/check_vars
if ($status != 0) exit(1)
#
find latest database dump
#
set DatabaseDumps = ($DOSIS_COMMAND_DIR/check* _vars $DOSIS_BACKUP/*.dbd)
shift DatabaseDumps
if ($#DatabaseDumps == 0) then
echo "No DOSIS database dumps available; cannot restore!"
exit(1)
endif
while ($#DatabaseDumps > 1)
shift DatabaseDumps
end
#
load database dump

B14 Appendix B Backup and Archive Script

#
cp $DatabaseDumps $DOSIS_DUMP_FILE
», if ($status != 0) then _
echo "Copy of database dump $DatabaseDumps failed"
echo” Please correct and rerun”
exit(1)
endif
isql -Usa -PSSA_PASSWORD <<EXIT >DOSIStemp
load database DOSIS from $DOSIS_DUMP_DEVICE
go
EXIT
set retumn = ‘cat DOSIStemp*
if ($#retum != 0) then
echo "Load of database dump $DatabaseDumps failed”
echo" Please correct below errors and rerun"
cat DOSIStemp
exit(1)
endif .
echo "DOSIS database dump loaded from $DatabaseDumps”
#
load transaction dumps
#
set LogDumps = ($DOSIS_COMMAND_DIR/check* _vars $DOSIS_BACKUP/*.11d)
shift LogDumps
while ($#LogDumps > 0)
sort <<EXIT >DOSIStemp
$LogDumps[1]:r
$DatabaseDumps:r
EXIT
set return = ‘cat DOSIStemp*
if (Sretumn{1] == $DatabaseDumps:r && $retum[2] != $DatabaseDumps:r) then
cp $LogDumps[1] $DOSIS_DUMP_FILE
if ($status 1= 0) then :
echo "Copy of transaction log dump $LogDumps[1] failed"
echo” Please correct and rerun" ’
exit(1)
endif
isql -Usa -P$SA_PASSWORD <<EXIT >DOSIStemp
load transaction DOSIS from $DOSIS_DUMP_DEVICE
go
EXIT
set return = ‘grep msg DOSIStemp*
if ($#retum != 0) then
echo "Load of transaction log $LogDumps|1] failed"
echo” Please correct below errors and rerun”
cat DOSIStemp
exit(1)
endif
echo "DOSIS transaction log loaded from $LogDumps[1]"
endif
shift LogDumps
end
#
success message
#
echo "DOSIS restore complete”
exit(0)

Appendix B Backup and Archive Script

B15

COPY ARCHIVED FILES FUNCTION SCRIPTING
#!csh
#
dosis_tape [yyyymmdd] [DEV]
copy archive files for yyyymmdd (if specified), else oldest files
to /dev/DEV (if specified), else to /dev/$DOSIS_TAPE
#
unset noclobber
#
make sure all required environment variables are set correctly
#
if ($7DOSIS_COMMAND_DIR == 0) then
echo "Environment variable DOSIS_COMMAND_DIR not set; please set and rerun”
set DOSIS_COMMAND_DIR = dummy
exit(1)
else if (-d $DOSIS_COMMAND_DIR == 0) then
echo "Environment variable DOSIS_COMMAND_DIR does not designate a directory"
echo” Please set and rerun”
exit(1)
endif
if (-e $DOSIS_COMMAND_DIR/check_vars == 0) then
echo "$DOSIS_COMMAND_DIR/check_vars script does not exist"
echo” Please fix and rerun”
exit(1)
endif
source $DOSIS_COMMAND_DIR/check_vars
if ($status != 0) exit(1)
#
check on how many arguments we have; set Date and Tape as appropriate
#
unset Date
unset Tape
switch ($#argv)
case 0:
breaksw
case 1:
egrep "marker19imarker20’ <<EXIT >DOSIStemp
marker$argv(1]
EXIT
set retum = ‘cat DOSIStemp*
if ($#return == 1) then
set Date = $argv[1]
else
set Tape = Sargv[1]
endif
breaksw
case 2:
default:
set Date = $argv[1]
set Tape = Sargv[2]
breaksw
endsw
#
find oldest archived files if date is not specified
#
if ($7Date == 0) then
set Date = ($DOSIS_COMMAND_DIR/check*_vars $DOSIS_ARCHIVE/*.ad)
shift Date
if ($#Date == 0) then
echo "No archive files are present. Please take an archive and rerun"
exit(1)
endif

B16 Appendix B Backup and Archive Script

awk ’{ print substr($1,1,8) }’ <<EXIT >DOSIStemp
$Date[1]:t
EXIT

set Date = ‘cat DOSIStemp*
endif
#
set Tape if tape has not been specified
#
if ($?Tape == 0) then

if ($?DOSIS_TAPE == 0) then

echo "You must specify a tape drive, or set DOSIS_TAPE environment var."

echo"” Please correct and rerun”
exit(1)
endif
set Tape = $DOSIS_TAPE
endif
set Tape = /dev/$Tape
#
make sure Tape device is valid
#

if (-e $Tape == 0) then
echo "Tape device $Tape does not exist. Please check and rerun”
exit(1)
endif
#
make sure all archive files exist
#
set WorkArchiveTables = ($ArchiveTables)
unset error
while ($#Work ArchiveTables != 0)
set filename = $DOSIS_ARCHIVE/$Date3Work Archive Tables[2].ad
if (-e $filename == 0) then
echo "Archive file $filename does not exist. Please correct and rerun”
set error = 1
endif
shift WorkArchiveTables
shift WorkArchiveTables
shift WorkArchiveTables
end
if ($2error) then
echo "Please correct above errors and rerun"
exit(1)
endif
#
make the tape
#
(¢d $DOSIS_ARCHIVE ; tar cf $Tape $Date*.ad)
if ($status != 0) then
echo "Creation of archive tape failed: Please correct above errors and rerun”
exit(1)
endif
echo "$Date archive written to $Tape"
exit(0)

Appendix B Backup and Archive Script

B17

Appendix C
Configuration Management
Library Structure

The format of the file listings within the Configuration Management Li-
brary Structure is as follows:

/directory-name/directory-name/.../file-name

The files contained within the Silent Inspector system are:

/BINDING/vadscrt1.0 /SAME/standardS.a
/BINDING/libasybdb.a /SAME/systemS.a
/BINDING/libsybdb.a /SAME/booleanB.a
/BINDING/v_usr_conf.a /SL-MODELS/s.proj_add.g
/BINDING/v_usr_conf_b.a /SL-MODELS/p.Makefile
/BINDING/v_usr_conf _i.a /SL-MODELS/s.Makefile
/BINDING/c_timeB.o /SL-MODELS/s.mk_button.g
/BINDING/xev.o /SL-MODELS/s.mfiledbl.g
/SAME/basetypeS.a /SL-MODELS/s.fldent_sz.g
ISAME/booleanS.a /SL-MODELS/Makefile
/SAME/charB.a /SL-MODELS/s.m_retum.g
/SAME/charS.a /SL-MODELS/s.fldent85.g
/SAME/communicB.a /SL-MODELS/s.m_calll.g
/SAME/communicS.a /SL-MODELS/s.timetrend.g
ISAME/db_errorB.a /SL-MODELS/CorpLogo.m1
/SAME/dateS.a /SL-MODELS/s.N_call.g
/SAME/db_errorS.a /SL-MODELS/s.da_twobut.g
/SAME/doubleB.a /SL-MODELS/s.m_1_column.g
/SAME/doubleS.a /SL-MODELS/M_call.m1
/SAME/enumB.a /SL-MODELS/M_default.m1
/SAME/enumS.a /SL-MODELS/s.m_quit.g
/SAME/intB.a /SL-MODELS/s.daily.g
/SAME/exceptS.a /SL-MODELS/s.day_foot.g
/SAME/intS.a /SL-MODELS/s.day_head.g
/SAME/realB.a /SL-MODELS/s.day_line.g
/SAME/realS.a /SL-MODELS/s.day_total.g
ISAMEHo_strinX.a /SL-MODELS/s.day_totft.g
/SAME/smallintB.a /SL-MODELS/s.day_tothd.g
/SAME/smallintS.a /SL-MODELS/s.m_call.g
/SAME/not_nullX.a /SL-MODELS/N_call.m1
/SAME/sourceS.a /SL-MODELS/Informatio.m1

Appendix C Configuration Management Library Structure

C1

c2

/SL-MODELS/Waming.m1
/SL-MODELS/s floatout.g
/SL-MODELS/background.ml
/SL-MODELS /backdrop.m1
/SL-MODELS/button.m1
/SL-MODELS/choice.m1
/SL-MODELS/control.m1
/SL-MODELS/da_twobut.m1
/SL-MODELS/s.legend.g
/SL-MODELS/daily.m1
/SL-MODELS/s.mo_pushbut.g
/SL-MODELS/s.m_dialog.g
/SL-MODELS/s.m_dnarrow.g
/SL-MODELS/s.m_slidehx.g
/SL-MODELS/s.m_slider.g
/SL-MODELS/day_foot.m1
/SL-MODELS/s.m_slidehxl.g
/SL-MODELS/s.m_slidevxl.g
/SL-MODELS/s.m_txtscrol.g
/SL-MODELS/s.m_uparrow.g
/SL-MODELS/s.mfilesel.g
/SL-MODELS/s.md_button2.g
/SL-MODELS/s.pushface.g
/SL-MODELS/day_head.m1
/SL-MODELS}/s.plot.g
/SL-MODELS/s.panel.g
/SL-MODELS/day_line.m1
/SL-MODELS/day_total.m1
/SL-MODELS/day_totft.m1
/SL-MODELS/day_tothd.m1
/SL-MODELS/do_twobut.m1
/SL-MODELS/downtime.m1
/SL-MODELS/s.stamp.g
/SL-MODELS/s.plt_twobut.g
/SL-MODELS/s.scrollst.g
/SL-MODELS/s.CorpLogo.g
/SL-MODELS/s.Informatio.g
/SL-MODELS/s.M _call.g
/SL-MODELS/s.M_default.g
/SL-MODELS/s.Waming.g
/SL-MODELS/s.background.g
/SL-MODELS/s.quitbutton.g
/SL-MODELS/s.button.g
/SL-MODELS/s.choice.g
/SL-MODELS/s.control.g
/SL-MODELS/s.reportbar.g
/SL-MODELS/s.reportpg.g
/SL-MODELS/s.reportst.g
/SL-MODELS/dr_ops.m1
/SL-MODELS/s.scrollbox.g
/SL-MODELS/draftx.m1
/SL-MODELS/s.text_sz.g
/SL-MODELS/s.text_fz.g
/SL-MODELS/s.text_left.g
/SL-MODELS/s.textout.g
/SL-MODELS/s.do_twobut.g
/SL-MODELS/s.downtime.g
/SL-MODELS/s.dr_ops.g
/SL-MODELS/s.draftx.g
/SL-MODELS/s.ds_pushbut.g
/SL-MODELS/s.dss.g
/SL-MODELS/s.dssentry.g

/SL-MODELS/s.dssscreen.g
/SL-MODELS/s.dt_input.g
/SL-MODELS/s.entry.g
/SL-MODELS/ds_pushbut.m1
/SL-MODELS/s.gen_head.g
/SL-MODELS/s.intro.g
/SL-MODELS/s.job.g
/SL-MODELS/s.job_head.g
/SL-MODELS/dss.m1
/SL-MODELS/s.top.g
/SL-MODELS/s.text_box.g
/SL-MODELS/dssentry.m1
/SL-MODELS/dssscreen.m1
/SL-MODELS/dt_input.m1
/SL-MODELS/entry.ml
/SL-MODELS/fldent85.m1
/SL-MODELS/floatout.m1
/SL-MODELS/intro.m1
/SL-MODELS/legend.m1
/SL-MODELS/s.md_button.g
/SL-MODELS/m_1_column.m1
/SL-MODELS/m_call.m1
/SL-MODELS/m_calll.m1
/SL-MODELS/s.motifscale.g
/SL-MODELS/s.noptions.g
/SL-MODELS/s.options.g
/SL-MODELS/s.outputdbl.g
/SL-MODELS/s.outputonly.g
/SL-MODELS/s.outputwide.g
/SL-MODELS/m_dialog.m1
/SL-MODELS/m_dnarrow.m1
/SL-MODELS/s.trip_line.g
/SL-MODELS/s.print.g
/SL-MODELS/s.pushbutton.g
/SL-MODELS/s.trip_total.g
/SL-MODELS/m_quit.m1
/SL-MODELS/m_return.m1
/SL-MODELS/m_slideh.m1
/SL-MODELS/m_slidehx.m1
/SL-MODELS/m_slidehxl.m1
/SL-MODELS/m_slider.m1
/SL-MODELS/s.select4.g
/SL-MODELS/m_slidevxl.m1
/SL-MODELS/m_txtscrol.m1
/SL-MODELS/m_uparrow.m1
/SL-MODELS/md_button2.m1
/SL-MODELS/md_button.m1
/SL-MODELS/mfilesel.m1
/SL-MODELS/mk_button.m1
/SL-MODELS/mo_pushbut.m1
/SL-MODELS/s.trip.g
/SL-MODELS/s.trip_foot.g
/SL-MODELS/s.trip_head.g
/SL-MODELS/motifscale.m1
/SL-MODELS/navaid.m1
/SL-MODELS/noptions.m1
/SL-MODELS/options.m1
/SL-MODELS/outputdbl.m1
/SL-MODELS/outputonly.m1
/SL-MODELS/outputwide.m1
/SL-MODELS/panel.m1
/SL-MODELS/plot.m1

Appendix C Configuration Management Library Structure

/SL-MODELS/plt_twobut.m1
/SL-MODELS/portland.m1
/SL-MODELS/print.m1
/SL-MODELS/pushbutton.m1
/SL-MODELS/pushface.m1
/SL-MODELS/quitbutton.m1
/SL-MODELS/reportbar.m1
/SL-MODELS/reportpg.m1
/SL-MODELS/reportst.m1
/SL-MODELS/s.m_slideh.g
/SL-MODELS/s.backdrop.g
/SL-MODELS/scrollbox.m1
/SL-MODELS/scrollst.m1
/SL-MODELS/showmap.m1
/SL-MODELS/s.navaid.g
/SL-MODELS/s.portland.g
/SL-MODELS/stamp.m1
/SL-MODELS/c.awk
/SL-MODELS/text_box.m1
/SL-MODELS/text_fz.m1
/SL-MODELS/text_left.m1
/SL-MODELS/text_sz.m1
/SL-MODELS/textout.m1 -
/SL-MODELS/Aimetrend.m1
/SL-MODELS/top.m1
/SL-MODELS /trip.m1
/SL-MODELS/s.showmap.g
/SL-MODELS/s.value.g
/SL-MODELS trip_foot.m1
/SL-MODELS /trip_head.m1
/SL-MODELS ftrip_line.m1
/SL-MODELS trip_total.m1
/SL-MODELS/value.m1
/SL-MODELS/job.m1
/SL-MODELS/job_head.m1
/SL-MODELS/select4.m1
/SYBASE/.imports/STANDARD
/SYBASE/.imports/a_strings
ISYBASE/.imports/file_support
/SYBASE/.imports/io_exceptions
/SYBASE/.imports/number_io
/SYBASE/.importsfos_files
/SYBASE/.imports/system
[SYBASE/.importsftext_io
/SYBASE/.importsftext_io.intege
/SYBASE/.importsftext_ioB

. /ISYBASE/.imports/text_supprt
/SYBASE/.imports/text_supprtB
/SYBASE/.importsfunchecked_conv
/SYBASE/.importsfunsigned_types
/SYBASE/ lines/INST13XX
ISYBASE/ lines/INST14XX
/SYBASE/ lines/.bara02
/SYBASE/ lines/.bcpb01
/SYBASE]/ lines/.err_hd_ctrb01
/SYBASE/ lines/.err_hd_ctrs01
/SYBASE/ lines/.example2pca0l
/SYBASE/ lines/.handlersb01
/SYBASE/ lines/.ifaceb01
/SYBASE/ lines/.msg_hd_ctrb01
ISYBASE/ lines/.msg_hd_ctrs01
/SYBASE/ lines/.proc_evntsb01
/SYBASE]/ lines/.str_utilb01

/SYBASE/ lines/.two_phb01
/SYBASE/.nets/INST13XX
/SYBASE/.nets/INST14XX
/SYBASE/.nets/.Verdixs01
/SYBASE/.nets/.Verdixs02
/SYBASE/.nets/.bara01
/SYBASE/.nets/.bara02
/SYBASE/.nets/.bcp_lows01
/SYBASE/.nets/.bcp_lows02
/SYBASE/.nets/.bcpb01
ISYBASE/.nets/.bcps01
/SYBASE/.nets/.c_err_hds01
ISYBASE/.nets/.c_err_hds02
/SYBASE/.nets/.c_msg_hds01
/SYBASE/.nets/.c_msg_hds02
/SYBASE/ .nets/.err_hd_ctrb01
/SYBASE/.nets/.err_hd_ctrs01
ISYBASE/.nets/.err_hdbO01
/SYBASE/.nets/.err_hdsO1
/SYBASE/.nets/.example2pca0l
/SYBASE/ .nets/.handlersb01
/SYBASE/.nets/.handlerss01
/SYBASE/.nets/.iface_lows01
/SYBASE/.nets/.iface_lows02
/SYBASE/.nets/.ifaceb01
/SYBASE/.nets/.ifaces01
/SYBASE/.nets/.msg_hd_ctrb01
/SYBASE/.nets/.msg_hd_ctrsO1
/SYBASE/.nets/.msg_hdb01
/SYBASE/.nets/.msg_hdsO1
/SYBASE/.nets/.proc_evntsb01
/SYBASE/.nets/.proc_evntss01
/SYBASE/.nets/.scounixs01
/SYBASE/.nets/.scounixs02
/SYBASE/.nets/.str_utilb01
/SYBASE/.nets/.str_utilsO1
/SYBASE/.nets/two_ph_lows01
/SYBASE/.nets/.two_ph_lows02
/SYBASE/.nets/.two_phb01
/SYBASE/.nets/.two_phs01
/SYBASE/.nets/.typess01
/SYBASE/.nets/.typess02
/SYBASE/.objects/INST13XX
/SYBASE/.objects/INST14XX
/SYBASE/.objects/examplel.o
/SYBASE/.objects/example2.0
/SYBASE/.objects/example3.o
ISYBASE/.objects/exampled.o
/SYBASE/.objects/example5.o
/SYBASE/.objects/example6.o
/SYBASE/.objects/example7.0
/SYBASE/.objects/example8.o
/SYBASE/.objects/.Verdixs01
/SYBASE/.objects/.Verdixs02
/SYBASE/.objects/.bara01
/SYBASE/.objects/.bara02
/SYBASE/.objects/.bcp_lows01
/SYBASE/.objects/.bcp_lows02
/SYBASE/.objects/.bcpb01
/SYBASE/.objects/.beps01
/SYBASE/.objects/.c_err_hds01
/SYBASE/.objects/.c_err_hds02
/SYBASE/.objects/.c_msg_hds01

Appendix C Configuration Management Library Structure

C3

C4

/SYBASE/.objects/.c_msg_hds02
/SYBASE/.objects/.err_hd_ctrb01
/SYBASE/.objects/.err_hd_ctrsO1
/SYBASE/.objects/.example2pca0l
/SYBASE/.objects/.handlersb01
/SYBASE/.objects/.handlerssO1
/SYBASE/.objects/.iface_lows01
/SYBASE]/.objects/.iface_lows02
/SYBASE]/.objects/.ifaceb01
/SYBASE/.objects/.ifaces01
/SYBASE/.objects/.msg_hd_ctrb01
/SYBASE/.objects/.msg_hd_ctrs01
/SYBASE/.objects/.proc_evntsb01
/SYBASE/.objects/.proc_evntss01
/SYBASE/.objects/.scounixs01
/SYBASE/.objects/.scounixs02
/SYBASE/.objects/.str_utilb01
/SYBASE/.objects/.str_utilsO1
/SYBASE/.objects/.two_ph_lows01
/SYBASE/.objects/.two_ph_lows02
/SYBASE/.objects/.two_phb01
/SYBASE/.objects/.two_phs01
/SYBASE/.objects/.typessO1
/SYBASE/.objects/.typess02
/database/Makefile
/database/adm_conS.a
/database/adminS.a
/database/db_stdS.a
/database/disp_conS.a
[database/disposalS.a
/database/down_conS.a
/database/downtimeS.a
/database/dr_conS.a
/database/dredgeS.a
/database/enum_indS.a
/database/flt_indS.a
/database/gsqlutlS.a
/database/gsybutlS.a
/database/int_indS.a
/database/lddisconS.a
/database/ldstaconS.a
/database/loadS.a
/database/load_conS.a
/database/loaddispS.a
/database/loadstatS.a
/database/prdisconS.a
/database/proj_conS.a
/database/projdispS.a
/database/projdredS.a
/database/projectS.a
/database/projstatS.a
/database/projsumS.a
/database/prstaconS.a
/database/prsumconS.a
/database/sta_conS.a
/database/stateS.a
/database/stateconS.a
/database/stationS.a
/database/str_indS.a
[database/syb_lowS.a
/database/syb_utlS.a
/database/sql_utlS.a

/database/prdr_conS.a
/database/adm_conB.a
/database/adminB.a
/database/databaseB.a
/database/disp_conB.a
/database/disposalB.a
/database/down_conB.a
/database/downtimeB.a
/database/dr_conB.a
/database/dredgeB.a
/database/enum_indB.a
/database/flt_indB.a
/database/gsqlutlB.a
/database/gsybutlB.a
/database/int_indB.a
/database/lddisconB.a
/database/ldstaconB.a
/database/loadB.a
/database/load_conB.a
/database/loaddispB.a
/database/loadstatB.a
/database/prdisconB.a
/database/prdr_conB.a
/database/proj_conB.a
/database/projdispB.a
/database/projdredB.a
/database/projectB.a
/database/projstatB.a
/database/projsumB.a
/database/prstaconB.a
/database/prsumconB.a
/database/sql_utlB.a
/database/sta_conB.a
/database/stateB.a
/database/stateconB.a
/database/stationB.a
/database/str_indB.a
/database/syb_utlB.a
/dss/RANGE.DAT
/dss/Makefile
/dss/CorpLogo.m1
[dss/stamp.m1
/dss/button.m1
[dss/pushface.m1
[dss/mfilesel.m1
/dss/motifscale.m1
fdss/dssentry.m1
/dss/quitbutton.m1
/dss/panel.m1
/dssfoutputwide.m1
/dss/print.m1
/dss/outputdbl.m1
/dss/outputonly.m1
/dssfbackground.m1
/dss/ds_pushbut.m1
/dss/pushbutton.m1
/dss/options.m1
/dss/noptions.m1
/dss/dssscreen.m1
[dss/choice.m1
/dss/intro.m1
/dss/entry.ml

* Appendix C Configuration Management Library Structure

[dss/dss.m1

/dss/control.m1

/dss/controlS.a

/dss/entryS.a

/dss/gismosS.a

/dssfinput_£iS.a

/dss/sensorS.a

[dss/sinitS.a

[dss/dssA.a

/dss/sinitB.a

/dss/controlB.a

[dss/entryB.a

/dss/gismosB.a

/dssfinput_fiB.a

[dss/sensorB.a
/ship/monitor/Makefile
/ship/monitor/ftimetrend.m1
/ship/monitor/stamp.m1
/ship/monitor/textout.m1
/ship/monitorftext_sz.m1
/ship/monitor/pushface.m1
/ship/monitor/mo_pushbut.m1
/ship/monitor/panel.m1
/ship/monitor/legend.m1
/ship/monitor/floatout.m1
/ship/monitor/draftx.m1
[ship/monitor/background.m1
/ship/fmonitor/dr_ops.m1
/ship/monitor/dr_opsS.a
/ship/monitor/sinitS.a
/ship/monitor/dr_opsB.a
/ship/monitor/sinitB.a
/ship/monitor/monitorA.a
/ship/reports/trip/Makefile
/ship/reportsftrip/Informatio.m1
[ship/reports/trip/background.m1
/ship/reports/trip/m_dialog.m1
[ship/reports/trip/pushface.m1
/ship/reports/trip/quitbutton.m1
/ship/reportsftrip/mfilesel.m1
/ship/reportsftrip/text_sz.m1
/ship/reportsfrip/text_fz.m1
/ship/reportsfrip/text_left.m1
/ship/reportsftrip/stamp.m1
/ship/reports/trip/trip.m1
/ship/reports/trip/trip_foot.m1
/ship/reports/trip/trip_head.m1
/ship/reports/trip/trip_line.m1
/ship/reports/trip/trip_total.m1
/ship/reportstrip/M_call.m1
/ship/reports/trip/M_default.m1
/ship/reports/trip/N_call. m1
/ship/reports/trip/Waming.m1
/ship/reportsitrip/m_1_column.m1
/ship/reportsftrip/m_call.m1
/ship/reportsfrip/m_dnarrow.m1
Iship/reports/trip/m_slidehx.m1
/ship/reportsftrip/m_slidehxl.m1
/ship/reportsirip/m_slider.m1
/ship/reports/trip/m_slidevxl.m1
/ship/reports/trip/m_txtscrol.m1
/ship/reports/trip/m_uparrow.m1
/ship/reportsftrip/scrollbox.m1

/ship/reportsftrip/top.m1
[ship/reportsftrip/reportbar.m1
/ship/reportsfrip/reportpg.m1
[ship/reports/rip/reportst.m1
/ship/reportsftrip/scrollst.m1
[ship/reportsftrip/tripS.a
Iship/reportsftrip/tripA.a
/ship/reportsfirip/autotripA.a
[ship/reportsftrip/tripB.a
/ship/reports/trip/autotrip
/ship/reports/daily/Makefile
fship/reports/daily/M_call.m1
[ship/reports/daily/M_default.m1
/ship/reports/daily/N_callml -
/ship/reports/daily/Waming.m1
/ship/reports/daily/background.m1
/ship/reports/daily/daily.m1
[ship/reports/daily/day_foot.m1
/ship/reports/daily/day_head.m1
[ship/reports/daily/day_line.m1
[ship/reports/daily/day_total.m1
/ship/reports/daily/day_totft.m1
/ship/reports/daily/day_tothd.m1
/ship/reports/daily/m_1_column.m1
/ship/reports/daily/m_call.m1
/ship/reports/daily/m_dialog.m1
[ship/reports/daily/m_dnarrow.m1
/ship/reports/daily/m_slidehx.m1
[ship/reports/daily/m_slidehxl.m1
/ship/reports/daily/m_slider.m1
/ship/reports/daily/m_slidevxl.m1
/ship/reports/daily/m_txtscrol. m1
/ship/reports/daily/m_uparrow.m1
/ship/reports/daily/mfilesel.m1
/ship/reports/daily/pushface.m1
/ship/reports/daily/quitbutton.m1
[ship/reports/daily/reportbar.m1
[ship/reports/daily/reportpg.m1
[ship/reports/daily/reportst.m1
[ship/reports/daily/scrollbox.m1
fship/reports/daily/scrollst.m1
/ship/reports/daity/stamp.m1
/ship/reports/daily/text_fz.m1
[ship/reports/daily/text_left.m1
[ship/reports/dailytext_sz.m1
/ship/reports/daily/top.m1
[ship/reports/daily/da_twobut.m1
/ship/reports/daily/dailyS.a
[ship/reports/daily/dailyA.a
[ship/reports/daily/autodalyA.a
/ship/reports/daily/dailyB.a
[ship/reports/job/Makefile
/ship/reports/job/job.m1
/ship/reports/job/job_head.m1
/ship/reports/job/Informatio.m1
/ship/reports/job/background.m1
/ship/reports/job/do_twobut.m1
/ship/reports/job/m_dialog.m1
/ship/reports/job/pushface.m1
/ship/reports/job/quitbutton.m1
[ship/reports/job/mfilesel. m1
/ship/reports/job/text_sz.m1
/ship/reports/jobftext_fz.m1

Appendix C Configuration Management Library Structure

C5

[ship/reports/jobftext_left.m1
/ship/reports/job/stamp.m1
/ship/reports/job/M_call.m1
/ship/reports/job/M_default.m1
/ship/reponts/job/N_call.m1
/ship/reports/job/Waming.m1
[ship/reports/job/m_1_column.m1
Iship/reports/job/m_call.m1
/ship/reports/job/m_dnarrow.m1
[ship/reports/job/m_slidehx.m1
/ship/reports/job/m_slidehxl.m1
/ship/reports/job/m_slider.m1
/ship/reports/job/m_slidevxl.m1
/ship/reports/job/m_txtscrol.m1
/ship/reports/job/m_uparrow.m1
/ship/reports/job/md_button.m1
/ship/reports/job/scrollbox.m1
/ship/reports/jobftop.m1
[ship/reports/job/reportbar.m1
/ship/reports/job/reportpg.m1
/ship/reports/job/reportst.m1
[ship/reports/job/scrollst.m1
/ship/reports/job/jobS.a
/ship/reports/job/jobA.a
/ship/reports/job/jobB.a
/ship/downtime/Makefile
/ship/downtime/N_call.m1
/ship/downtime/background.m1
/ship/downtime/downtime.m1
/ship/downtime/dt_input.m1
/ship/downtime/m_call.m1
/ship/downtime/md_button.m1
/ship/downtime/fldent85.m1
/ship/downtime/mfilesel.m1
/ship/downtime/pushface.m1
/ship/downtime/stamp.m1
/ship/downtime/scrolist.m1
/ship/downtime/scrollbox.m1
/ship/downtime/m_txtscrol.m1
/ship/downtime/m_dnarrow.m1
/ship/downtime/m_uparrow.m1
/ship/downtime/m_slider.m1
/ship/downtime/m_1_column.m1
[ship/downtime/mk_button.m1
/ship/downtime/text_fz.m1
/ship/downtime/text_sz.m1
/ship/downtime/do_twobut.m1
/ship/downtime/dfldprocS.a
/ship/downtime/dtinputS.a
/ship/downtime/dtselectS.a
/ship/downtime/downtimeA.a
/ship/downtime/dfldprocB.a
/ship/downtime/dtinputB.a
/ship/downtime/dtselectB.a
/ship/plot/Makefile
[ship/plot/plotS.a

/ship/plot/plotA.a
/ship/plot/plotB.a
/ship/itkemelA.a
[support/Makefile
[support/cstringsS.a
[support/coorS.a
/support/debugA.a
/support/dialogstS.a
/support/domainS.a
/support/ficldmgrS.a
[support/genericstS.a
[support/getenvA.a
[support/graphstS.a
[support/id_serverS.a
[support/mapS.a
[support/menubarstS.a
/support/randomS.a
/support/reportstS.a
/support/scrollstS.a
[support/searchS.a
/support/supportS.a
[support/ftermioS.a
/supportftimeS.a
[supportfto_sA.a
[supportfto_vA.a
[supportftodS.a
/supportfvadsinitS.a
[support/databaseS.a
[support/graphS.a
/support/rep_genS.a
/support/dredgeioS.a
/support/computeS.a
/support/computeB.a
[support/coorB.a
/support/cstringsB.a
[support/c127strS.a
/support/dialogstB.a
/support/dredgeioB.a
[support/fieldmgrB.a
/support/genericstB.a
/support/graphB.a
/support/graphstB.a
[support/id_serverB.a
/support/mapB.a
/support/menubarstB.a
/support/randomB.a
/support/rep_genB.a
[support/reportstB.a
/support/scrollstB.a
/support/searchB.a
[support/supportB.a
[supportftimeB.a
/support/todB.a
[support/vadsinitB.a

Appendix C Configuration Management Library Structure

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington Headquarters Services, Directorate for Information Oparations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Aington, VA22202-4302, and to the
Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC20503.

1.

AGENCY USE ONLY (Leave blank) |2. REPORT DATE

3. REPORT TYPE AND DATES COVERED

February 1996 Final report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Silent Inspector System Technical Manual
6. AUTHOR(S)
Jeffrey M. Cox, Paul Maresca, James Rosati III
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Evans-Hamilton, Inc. REPORT NUMBER
731 Northlake Way, Suite 201, Seattle, WA 98103 Technical Report DRP-96-1
AdaSoft, Inc.
8750-9 Cherry Lane, Laurel, MD 20707
U.S. Army Engineer Waterways Experiment Station
3909 Halls Ferry Road, Vicksburg, MS 39180-6199
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
U.S. Army Corps of Engineers AGENCY REPORT NUMBER
Washington, DC 20314-1000
11. SUPPLEMENTARY NOTES
Available from National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.
13. ABSTRACT (Maximum 200 words) ‘
This report describes the Silent Inspector system developed for monitoring hopper dredge operations. The system collects
and records measurements from shipboard sensors, calculates the dredging activities being performed and the weight of the
material being recovered, and displays this information through standard reports and graphical data displays. Recorded data
are also automatically backed up and later archived to allow transfer of the data to other locations. The Silent Inspector data
can provide a permanent record of the dredging activity.
This report is intended to be used by systems engineers. A companion report entitled Silent Inspector User’s Manual
(Cox, Maresca, and Jarvela 1995) published by the U.S. Army Engineer Waterways Experiment Station describes how to
operate the installed system.
14. SUBJECT TERMS 15. NUMBER OF PAGES
Dredging 126
Hopper dredges
Silent Inspector System 16. PRICE CODE
17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION |19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

ST T T TR NN

Destroy this report when no longer needed. Do not return it to the originator.

